182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of element segregation on deformation mechanisms of nano/ultrafine-grained 304 stainless steel

, , &
Pages 3053-3064 | Received 16 Mar 2023, Accepted 16 Jul 2023, Published online: 25 Jul 2023

References

  • Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mat Sci Eng R. 2009;65:39–104. doi:10.1016/j.mser.2009.03.001
  • Forouzan F, Najafizadeh A, Kermanpur A, et al. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process. Mater Sci Eng A. 2010;527:7334–7339. doi:10.1016/j.msea.2010.08.002
  • Odnobokova MV, Belyakov AN, Dolzhenko PD, et al. On the strengthening mechanisms of high nitrogen austenitic stainless steels. Mater Lett. 2023;331:133502. doi:10.1016/j.matlet.2022.133502
  • Sun GS, Du LX, Hu J, et al. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Mater Charact. 2015;110:228–235. doi:10.1016/j.matchar.2015.11.001
  • Barr CJ, Xia K. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures. J Mater Sci Technol. 2021;82:57–68. doi:10.1016/j.jmst.2020.12.016
  • Wang PJ, Zhao JB, Ma LW, et al. Effect of grain ultra-refinement on microstructure, tensile property, and corrosion behavior of low alloy steel. Mater Charact. 2021;179:111385. doi:10.1016/j.matchar.2021.111385
  • Lv ZQ, Qian LH, Liu S, et al. Preparation and mechanical behavior of ultra-high strength low-carbon steel. Materials (Basel). 2020;13:459. doi:10.3390/ma13020459
  • Fukuda Y, Oh-ishi K, Horita Z, et al. Processing of a low-carbon steel by equal-channel angular pressing. Acta Mater. 2002;50:1359–1368. doi:10.1016/S1359-6454(01)00441-4
  • Zheng ZJ, Liu JW, Gao Y. Achieving high strength and high ductility in 304 stainless steel through bi-modal microstructure prepared by post-ECAP annealing. Mater Sci Eng A. 2017;680:426–432. doi:10.1016/j.msea.2016.11.004
  • Su LH, Lu C, Tieu K, et al. Annealing behavior of accumulative roll bonding processed aluminum composites. Steel Res Int. 2013;84:1241–1245. doi:10.1002/srin.201300032
  • Miyajima Y, Homma T, Takenaka S, et al. High strength and low electrical resistivity of Al-0.1 at%Ni alloys produced by accumulative roll bonding. Mater Today Commun. 2022;33:104587. doi:10.1016/j.mtcomm.2022.104587
  • Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A. 2006;441:1–17. doi:10.1016/j.msea.2006.08.095
  • Biserova-Tahchieva A, Chatterjee D, van Helvoort ATJ, et al. Effect of the nanostructuring by high-pressure torsion process on the secondary phase precipitation in UNS S32750 Superduplex stainless steel. Mater Charact. 2022;183:111639. doi:10.1016/j.matchar.2021.111639
  • Wang BF, Wang XY, Li J. Formation and microstructure of ultrafine-grained titanium processed by multi-directional forging. J Mater Eng Perform. 2016;25:2521–2527. doi:10.1007/s11665-016-2079-3
  • Kiahosseini SR, Mohammadi Baygi SJ, Khalaj G, et al. A study on structural, corrosion, and sensitization behavior of ultrafine and coarse grain 316 stainless steel processed by multiaxial forging and heat treatment. J Mater Eng Perform. 2017;27:271–281. doi:10.1007/s11665-017-3095-7
  • Celada-Casero C, Huang BM, Aranda MM, et al. Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel. Mater Charact. 2016;118:129–141. doi:10.1016/j.matchar.2016.05.014
  • Zhao MM, Wu HY, Lu JN, et al. Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel. Mater Charact. 2022;194:112360. doi:10.1016/j.matchar.2022.112360
  • Wu YZ, Luo KG, Zhang Y, et al. Microstructures and mechanical properties of a CoCrFeNiMn high-entropy alloy obtained by 223 K cryorolling and subsequent annealing. J Alloy Compd. 2022;921:166166. doi:10.1016/j.jallcom.2022.166166
  • Luo KG, Xiong HQ, Zhang Y, et al. AA1050 metal matrix composites reinforced by high-entropy alloy particles via stir casting and subsequent rolling. J Alloy Compd. 2022;893:162370. doi:10.1016/j.jallcom.2021.162370
  • Misra RDK, Nayak S, Mali SA, et al. On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metall Mater Trans A. 2009;41:3–12. doi:10.1007/s11661-009-0072-2
  • Sun GS, Du LX, Hu J, et al. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel. Mater Sci Eng A. 2019;746:341–355. doi:10.1016/j.msea.2019.01.020
  • Tomimura K, Takaki S, Tanimoto S, et al. Optimal chemical composition in Fe-Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ Int. 1991;31:721–727. doi:10.2355/isijinternational.31.721
  • Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 1991;31:1431–1437. doi:10.2355/isijinternational.31.1431
  • Kaufman L, Clougherty EV, Weiss RJ. The lattice stability of metals–III. iron. Acta Metall. 1963;11:323–335. doi:10.1016/0001-6160(63)90157-3
  • Challa VSA, Wan XL, Somani MC, et al. Significance of interplay between austenite stability and deformation mechanisms in governing three-stage work hardening behavior of phase-reversion induced nanograined/ultrafine-grained (NG/UFG) stainless steels with high strength-high ductility combination. Scripta Mater. 2014;86:60–63. doi:10.1016/j.scriptamat.2014.05.010
  • Sun GS, Du LX, Hu J, et al. Low temperature superplastic-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel. Mater. Design. 2017;117:223–231. doi:10.1016/j.matdes.2016.12.086
  • Lu JN, Zhao MM, Wu HY, et al. Effect of warm deformation on mechanical properties and deformation mechanism of nano/ultrafine-grained 304 stainless steel. Steel Res Int. 2022;93:2200198. doi:10.1002/srin.202200198
  • Zhao MM, Wu HY, Zhang B, et al. Effect of Cr-rich carbide precipitates on austenite stability and consequent corrosion behavior of ultrafine-grained 304 stainless steel produced by cryogenic rolling and annealing treatment. Mater Charact. 2023;195:112553. doi:10.1016/j.matchar.2022.112553
  • Kim J-M, Jin H-H, Kwon J, et al. Effects of cellular segregation for high strength and ductility of additively manufactured 304L stainless steel. Mater Charact. 2022;194:112364. doi:10.1016/j.matchar.2022.112364
  • Babicheva RI, Dmitriev SV, Bai L, et al. Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys. Comp Mater Sci. 2016;117:445–454. doi:10.1016/j.commatsci.2016.02.013
  • Zuo J, Nakata T, Xu C, et al. Effect of grain boundary segregation on microstructure and mechanical properties of ultra-fine grained Mg–Al–Ca–Mn alloy wires. Mater Sci Eng A. 2022;848:143423. doi:10.1016/j.msea.2022.143423
  • Ghosh S, Sangwan S, Mandal S, et al. Room temperature giant magneto-caloric effect in Ni45Mn44Sn11-XInX (X=1, 3) disordered Heusler alloy: the role of martensite transition. J Magn Magn Mater 2022;562:169797. doi:10.1016/j.jmmm.2022.169797
  • Li JB, Li Y, Zhang YY, et al. Effect of heat treatment in dual-phase region on microstructure and property of 430 ferritic stainless steel hot rolled sheet. J Iron Steel Res. 2017;29:62–66. doi:10.13228/j.boyuan.issn1001-0963.20160192
  • Fu XQ, Ji YC, Cheng XQ, et al. Effect of grain size and its uniformity on corrosion resistance of rolled 316L stainless steel by EBSD and TEM. Mater Today Commun. 2020;25:101429. doi:10.1016/j.mtcomm.2020.101429
  • Chowdhury SG, Datta S, Kumar BR, et al. Randomization of texture during recrystallization of austenite in a cold rolled metastable austenitic stainless steel. Mater Sci Eng A. 2007;443:114–119. doi:10.1016/j.msea.2006.09.059
  • Sun GS, Du LX, Hu J, et al. Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing. Mater Sci Eng A. 2018;709:254–264. doi:10.1016/j.msea.2017.10.054
  • Masoumi M, Echeverri EAA, Silva CC, et al. Effect of different thermomechanical processes on the microstructure, texture, and mechanical properties of API 5L X70 steel. J Mater Eng Perform. 2018;27:1694–1705. doi:10.1007/s11665-018-3276-z
  • Wroński M, Wierzbanowski K, Wojtas D, et al. Microstructure, texture and mechanical properties of titanium grade 2 processed by ECAP (route C). Met Mater Int. 2018;24:802–814. doi:10.1007/s12540-018-0096-5
  • Sun GS, Liu JZ, Zhu YT. Heterostructure alleviates Lüders deformation of ultrafine-grained stainless steels. Mater Sci Eng A. 2022;848:143393. doi:10.1016/j.msea.2022.143393
  • Sun GS, Zhao MM, Du LX, et al. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Mater Charact. 2022;184:111674. doi:10.1016/j.matchar.2021.111674
  • Kisko A, Misra RDK, Talonen J, et al. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Mater Sci Eng A. 2013;578:408–416. doi:10.1016/j.msea.2013.04.107
  • Jin J-E, Lee Y-K. Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A. 2009;527:157–161. doi:10.1016/j.msea.2009.08.028
  • Challa VSA, Wan XL, Somani MC, et al. Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Mater Sci Eng A. 2014;613:60–70. doi:10.1016/j.msea.2014.06.065
  • Challa VSA, Misra RDK, Somani MC, et al. Strain hardening behavior of nanograined/ultrafine-grained (NG/UFG) austenitic 16Cr–10Ni stainless steel and its relationship to austenite stability and deformation behavior. Mater Sci Eng A. 2016;649:153–157. doi:10.1016/j.msea.2015.09.112
  • Misra RDK, Kumar BR, Somani M, et al. Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels. Scripta Mater. 2008;59:79–82. doi:10.1016/j.scriptamat.2008.02.028
  • Misra RDK, Zhang Z, Jia Z, et al. Probing deformation processes in near-defect free volume in high strength–high ductility nanograined/ultrafine-grained (NG/UFG) metastable austenitic stainless steels. Scripta Mater. 2010;63:1057–1060. doi:10.1016/j.scriptamat.2010.07.041
  • He YM, Wang YH, Guo K, et al. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mater Sci Eng A. 2017;708:248–253. doi:10.1016/j.msea.2017.09.103
  • Zheng ZJ, Gao Y, Liu JW, et al. A hybrid refining mechanism of microstructure of 304 stainless steel subjected to ECAP at 500°C. Mater Sci Eng A. 2015;639:615–625. doi:10.1016/j.msea.2015.05.085
  • Sun GS, Hu J, Zhang B, et al. The significant role of heating rate on reverse transformation and coordinated straining behavior in a cold-rolled austenitic stainless steel. Mater Sci Eng A. 2018;732:350–358. doi:10.1016/j.msea.2018.07.024
  • Kaoumi D, Liu JL. Deformation induced martensitic transformation in 304 austenitic stainless steel: In-situ vs. ex-situ transmission electron microscopy characterization. Mater Sci Eng A. 2018;715:73–82. doi:10.1016/j.msea.2017.12.036
  • Nohara K, Ono Y, Ohashi N. Strain-induced martensitic transformation in metastable austenitic stainless steels in multi-stage tensile deformation at various temperatures, new aspects of martensitic transformations. Japan Institute of Met. Tokyo. 1976;1976:315–320.
  • Mukarati TW, Mostert RJ, Siyasiya CW. Modeling of the kinetics of strain-induced martensite transformation and the transformation-induced plasticity effect in a lean-alloyed metastable austenitic stainless steel. Steel Res Int. 2021;93:2100459. doi:10.1002/srin.202100459
  • Schramm RE, Reed RP. Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A. 1975;6:1345. doi:10.1007/BF02641927
  • Das A. Revisiting stacking fault energy of steels. Metall Mater Trans A. 2016;47:748–768. doi:10.1007/s11661-015-3266-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.