181
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optical, magnetic, and photoluminescence properties of Cr/Mn-doped ZnO nanoparticles synthesised by solution combustion method

, , , , , & show all
Pages 3076-3089 | Received 29 Jun 2022, Accepted 18 Jul 2023, Published online: 10 Aug 2023

References

  • Adams FC, Barbante C. Nanoscience, nanotechnology and spectrometry. Spectrochim Acta Part B. 2013;86:3–13. doi:10.1016/j.sab.2013.04.008
  • Lines MG. Nanomaterials for practical functional uses. J Alloys Compd. 2008;449(1-2):242–245. doi:10.1016/j.jallcom.2006.02.082
  • Wang L, Wei Z, Mao M, et al. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 2019;16:434–454. doi:10.1016/j.ensm.2018.06.027
  • Eranna G, Joshi BC, Runthala DP, et al. Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci. 2004;29(3–4):111–188. doi:10.1080/10408430490888977
  • Vayssieres L. On the design of advanced metal oxide nanomaterials. Int J Nanotechnol. 2004;1(1/2):1–41. doi:10.1504/IJNT.2004.003728
  • Rahman MM, Gruner G, Al-Ghamdi MS, et al. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes. Chem Cent J. 2013;7(1):1–2. doi:10.1186/1752-153X-7-60
  • Zhuiykov S. Woodhead Publishing; 2014.
  • Li S, Zheng J, Yang W, et al. Preparation and characterization of three-dimensional ordered macroporous rare earth oxide—CeO2. J Porous Mater. 2008;15(5):589–592. doi:10.1007/s10934-007-9137-z
  • Baruah A, Chaudhary V, Malik R, et al. 17 - Nanotechnology based solutions for wastewater treatment. Nanotechnol Water Wastewater Treat: Theory Appl. 2018;337(2019):337–368. doi:10.1016/B978-0-12-813902-8.00017-4
  • Abu-Dief AM. Development of metal oxide nanoparticles as semiconductors. J Nanotechnol Nanomater. 2020;1(1):5–10. doi:10.33696/Nanotechnol.1.002
  • Adekoya JA, Ogunniran KO, Siyanbola TO, et al. Noble Precious Met-Prop Nanoscale Eff Appl. 2018: 15–42.
  • Lai CH, Lu MY, Chen LJ. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 2012;22(1):19–30. doi:10.1039/C1JM13879K
  • Patzke GR, Krumeich F, Nesper R. Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed. 2002;41(14):2446–2461. doi:10.1002/1521-3773(20020715)41:14
  • Kennedy J J, Murmu PP, Manikandan E, et al. Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J Alloys Compd. 2014;616:614–617. doi:10.1016/j.jallcom.2014.07.179
  • Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 2015;345:329–336. doi:10.1016/j.apsusc.2015.03.176
  • Singh P, Kumar R, Singh RK. Progress on transition metal-doped ZnO nanoparticles and its application. Ind Eng Chem Res. 2019;58(37):17130–17163. doi:10.1021/acs.iecr.9b01561
  • Kennedy J, Markwitz A, Li Z, et al. Modification of electrical conductivity in RF magnetron sputtered ZnO films by low-energy hydrogen ion implantation. Curr Appl Phys. 2006;6(3):495–498. doi:10.1016/j.cap.2005.11.046
  • Kuchibhatla SV, Karakoti AS, Bera D, et al. One dimensional nanostructured materials. Prog Mater Sci. 2007;52(5):699–913. doi:10.1016/j.pmatsci.2006.08.001
  • Kennedy J, Carder DA, Markwitz A, et al. Properties of nitrogen implanted and electron beam annealed bulk ZnO. J Appl Phys. 2010;107(10):103518. doi:10.1063/1.3380592
  • Carofiglio M, Barui S, Cauda V, et al. Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl Sci. 2020;10(15):5194. doi:10.3390/app10155194
  • Kennedy J, Williams GV, Murmu PP, et al. Intrinsic magnetic order and inhomogeneous transport in Gd-implanted zinc oxide. Phys Rev B. 2013;88(21):214423. doi:10.1103/PhysRevB.88.214423
  • Mohan AC, Renjanadevi B. Effect of zinc oxide nanoparticles on mechanical properties of diglycidyl ether of Bisphenol-A. J Mater Sci. Eng. 2016;5(291):2169–0022. doi:10.4172/2169-0022.1000291
  • Hasija V, Sudhaik A, Raizada P, et al. Carbon quantum dots supported AgI /ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J Environ Chem Eng. 2019;7(4):103272. doi:10.1016/j.jece.2019.103272
  • Sadaiyandi K, Kennedy A, Sagadevan S, et al. Fabrication, characterization and cytotoxicity of spherical-shaped conjugated gold-cockle shell derived calcium carbonate nanoparticles for biomedical applications. Nanoscale Res Lett. 2018;13(1):1–3. doi:10.1186/s11671-017-2411-3
  • Li WW, Yu WL, Jiang YJ, et al. Structure, optical, and room-temperature ferromagnetic properties of pure and transition-metal-(Cr, Mn, and Ni)-doped ZnO nanocrystalline films grown by the sol−gel method. J Phys Chem C. 2010;114(27):11951–11957. doi:10.1021/jp103183v
  • Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett. 2001;79(7):988–990. doi:10.1063/1.1384478
  • Zhang Y, Ram MK, Stefanakos EK, et al. Nanofiber manufacture, properties and applications. J Nanomater. 2012;2012(2012):22. doi:10.1155/2012/624520
  • Bolaghi ZK, Hasheminiasari M, Masoudpanah SM. Solution combustion synthesis of ZnO powders using mixture of fuels in closed system. Ceram Int. 2018;44(11):12684–12690. doi:10.1016/j.ceramint.2018.04.069
  • Thoda O, Xanthopoulou G, Vekinis G, et al. Review of recent studies on solution combustion synthesis of nanostructured catalysts. Adv Eng Mater. 2018;20(8):1800047. doi:10.1002/adem.201800047
  • Liu Y, Yang Y, Yang J, et al. Intrinsic ferromagnetic properties in Cr-doped ZnO diluted magnetic semiconductors. J Solid State Chem. 2011;184(5):1273–1278. doi:10.1016/j.jssc.2011.03.049
  • Kaur P, Kumar S, Negi NS, et al. Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol–gel technique. Appl Nanosci. 2015;5(3):367–372. doi:10.1007/s13204-014-0326-1
  • Tan TL, Lai CW, Abd Hamid SB. Tunable band gap energy of Mn-doped ZnO nanoparticles using the coprecipitation technique. J Nanomater. 2014;2014:6. doi:10.1155/2014/371720
  • Kumar S, Tiwari N, Jha SN, et al. Structural and optical properties of sol–gel derived Cr-doped ZnO diluted magnetic semiconductor nanocrystals: an EXAFS study to relate the local structure. RSC Adv. 2016;6(109):107816–107828. doi:10.1039/C6RA15685A
  • Jayakumar OD, Salunke HG, Kadam RM, et al. Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology. 2006;17(5):1278–1285. doi:10.1088/0957-4484/17/5/020
  • Sharma D, Jha R. Transition metal (Co, Mn) co-doped ZnO nanoparticles: effect on structural and optical properties. J Alloys Compd. 2017;698:532–538. doi:10.1016/j.jallcom.2016.12.227
  • Muniraja P, Kumar KS, Ramanadha M, et al. Effect of synthesis temperature on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by combustion method. J Supercond Novel Magn. 2019;32(7):2175–2183. doi:10.1007/s10948-018-4942-y
  • Kumar P, Singh BK, Pal BN, et al. Correlation between structural, optical and magnetic properties of Mn-doped ZnO. Appl Phys A. 2016;122(740):1–2. doi:10.1007/s00339-016-0265-7
  • Yasoda B, Kumar KS, Ramanadha M, et al. Enhanced magnetic and optoelectronic properties of Cu-doped ZnO: Mn nanoparticles synthesized by solution combustion technique. J Supercond Novel Magn. 2020;33(5):1413–1421. doi:10.1007/s10948-019-05364-6
  • Pragna E, Ramanadha M, Sudharani A, et al. Nano synthesis and characterization of Co and Mn Co-doped ZnO by solution combustion technique. J Supercond Novel Magn. 2021;34(5):1507–1516. doi:10.1007/s10948-021-05874-2
  • Vasei HV, Masoudpanah SM, Adeli M, et al. Solution combustion synthesis of ZnO powders using various surfactants as fuel. J Sol-Gel Sci Technol. 2019;89(2):586–593. doi:10.1007/s10971-018-4900-y
  • Talam S, Karumuri SR, Gunnam N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Not. 2012;2012(2012):6. doi:10.5402/2012/372505
  • Peterson VK. Lattice parameter measurement using Le bail versus structural (rietveld) refinement: a caution for complex, low symmetry systems. Powder Diffr. 2005;20(1):14–17. doi:10.1154/1.1810156
  • Liu H, Ding Y, Somayazulu M, et al. Rietveld refinement study of the pressure dependence of the internal structural parameter u in the wurtzite phase of ZnO. Phys Rev B. 2005;71(21):212103. doi:10.1103/PhysRevB.71.212103
  • Santos DA, Rocha AD, Macedo MA. Rietveld refinement of transition metal doped ZnO. Powder Diffr. 2008;23(S1):S36–S41. doi:10.1154/1.2903739
  • Zak AK, Razali R, AbdMajid WH, et al.. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed. 2011;6(2011):1399. doi:10.2147/IJN.S19693
  • Wagner CD. Reference levels in electron-excited and X-ray-excited Auger spectra. Perkin-Elmer; 1979.
  • Shatnawi M, Alsmadi AM, Bsoul I, et al. Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Results Phys. 2016;6:1064–1071. doi:10.1016/j.rinp.2016.11.041
  • Luo X, Lee WT, Xing G, et al. Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors. Nanoscale Res Lett. 2014;9(1):1–8. doi:10.1186/1556-276X-9-1
  • Xu C, Hassel M, Kuhlenbeck H, et al. Surf Sci. 1991;258(1–3):23–34. doi:10.1016/0039-6028(91)90897-2
  • Li SS, Su YK. Improvement of the performance in Cr-doped ZnO memory devices via control of oxygen defects. RSC Adv. 2019;9(6):2941–2947. doi:10.1039/C8RA10112D
  • Hao YM, Lou SY, Zhou SM, et al. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res Lett. 2012;7(1):1–9. doi:10.1186/1556-276X-7-1
  • De la Rosa E, Sepulveda-Guzman S, Reeja-Jayan B, et al. Controlling the growth and luminescence properties of well-faceted ZnO nanorods. J Phys Chem C. 2007;111(24):8489–8495. doi:10.1021/jp071846t
  • Xiong G, Pal U, Serrano JG, et al. Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi C. 2006;3(10):3577–3581. doi:10.1002/pssc.200672164
  • Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater. 2012;34(11):1946–1953. doi:10.1016/j.optmat.2012.06.004
  • Dutta S, Chattopadhyay S, Sutradhar M, et al. Defects and the optical absorption in nanocrystalline ZnO. J Phys: Condens Matter. 2007;19(23):236218. doi:10.1088/0953-8984/19/23/236218
  • Senthilkumaar S, Rajendran K, Banerjee S, et al. Influence of Mn doping on the microstructure and optical property of ZnO. Mater Sci Semicond Process. 2008;11(1):6–12. doi:10.1016/j.mssp.2008.04.005
  • Qi B, Olafsson S, Gíslason HP. Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: controversial origin and challenges. Prog Mater Sci. 2017;90:45–74. doi:10.1016/j.pmatsci.2017.07.002
  • Omri K, El Ghoul J, Lemine OM, et al. Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattices Microstruct. 2013;60:139–147. doi:10.1016/j.spmi.2013.04.029
  • Ahmad H, Kamarudin SK, Minggu LJ, et al. Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev. 2015;43:599–610. doi:10.1016/j.rser.2014.10.101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.