124
Views
1
CrossRef citations to date
0
Altmetric
Critical Assessment

Critical Assessment 43: Microstructural and mechanical properties of friction stir additively fabricated SiC-Reinforced AA6061 build

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3090-3110 | Received 01 May 2023, Accepted 18 Jul 2023, Published online: 01 Aug 2023

References

  • Lesuer D, Syn CK, Sherby OD, et al. Mechanical behaviour of laminated metal composites. Int Mater Rev. 1996;41(5):169–197. doi:10.1179/imr.1996.41.5.169
  • Carreño F, Chao J, Pozuelo M, et al. Microstructure and fracture properties of an ultrahigh carbon steel–mild steel laminated composite. Scr Mater. 2003;48(8):1135–1140. doi:10.1016/S1359-6462(02)00602-4
  • Beygi R, Kazeminezhad M, Kokabi A. Microstructural evolution and fracture behavior of friction-stir-welded Al-Cu laminated composites. Metall Mater Trans A. 2014;45(1):361–370. doi:10.1007/s11661-013-1989-z
  • Pozuelo M, Carreño F, Ruano OA. Delamination effect on the impact toughness of an ultrahigh carbon–mild steel laminate composite. Compos Sci Technol. 2006;66(15):2671–2676. doi:10.1016/j.compscitech.2006.03.018
  • Palanivel S, Mishra RS. Building without melting: a short review of friction-based additive manufacturing techniques. Int J Additive Subtractive Materials Manuf. 2017;1(1):82–103. doi:10.1504/IJASMM.2017.082991
  • Rathee S, Maheshwari S, Siddiquee AN, et al. A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing. Crit Rev Solid State Mater Sci. 2018;43(4):334–366. doi:10.1080/10408436.2017.1358146
  • Srivastava M, Rathee S, Maheshwari S, et al. A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques. Crit Rev Solid State Mater Sci. 2019;44(5):345–377. doi:10.1080/10408436.2018.1490250
  • Wei J, He C, Qie M, et al. Achieving high performance of wire arc additive manufactured Mg–Y–Nd alloy assisted by interlayer friction stir processing. J Mater Process Technol. 2023;311:117809–117821. doi:10.1016/j.jmatprotec.2022.117809.
  • Srivastava M, Rathee S. Additive manufacturing: recent trends, applications and future outlooks. Prog Addit Manuf. 2022;7(2):261–287. doi:10.1007/s40964-021-00229-8
  • Rathee S, Srivastava M, Pandey PM, et al. Metal additive manufacturing using friction stir engineering: a review on microstructural evolution, tooling and design strategies. CIRP J Manuf Sci Technol. 2021;35:560–588. doi:10.1016/j.cirpj.2021.08.003
  • Rathee S, et al. Friction based additive manufacturing technologies: principles for building in solid state, benefits, limitations, and applications. Boca Raton: CRC Press; 2018.
  • Cederqvist L, Reynolds A. Factors affecting the properties of friction stir welded aluminum lap joints. Weld J. 2001;80(12):281-s–287-s.
  • Cao X, Jahazi M. Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Mater Des. 2011;32(1):1–11. doi:10.1016/j.matdes.2010.06.048
  • Yazdanian S, Chen Z, Littlefair G. Effects of friction stir lap welding parameters on weld features on advancing side and fracture strength of AA6060-T5 welds. J Mater Sci. 2012;47:1251–1261. doi:10.1007/s10853-011-5747-6
  • Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des. 2015;65:934–952. doi:10.1016/j.matdes.2014.09.082
  • Yuqing M, Liming K, Chunping H, et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing. Int J Adv Manuf Technol. 2016;83(9):1637–1647. doi:10.1007/s00170-015-7695-9
  • He C, Li Y, Zhang Z, et al. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al–Zn–Mg alloy. Mater Sci Eng A. 2020;777:139035–139047. doi:10.1016/j.msea.2020.139035
  • Zhao Z, Yang X, Li S, et al. Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy. J Manuf Process. 2019;38:396–410. doi:10.1016/j.jmapro.2019.01.042
  • Wlodarski S, Avery DZ, White BC, et al. Evaluation of grain refinement and mechanical properties of additive friction stir layer welding of AZ31 magnesium alloy. J Mater Eng Perform. 2021;30:964–972. doi:10.1007/s11665-020-05394-5
  • Jiang T, Jiao T, Dai G, et al. Microstructure evolution and mechanical properties of 2060 Al-Li alloy via friction stir additive manufacturing. J Alloys Compd. 2023;935:168019–168029. doi:10.1016/j.jallcom.2022.168019
  • Thangarasu A, Murugan N, Dinaharan I, et al. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Arch Civ Mech Eng. 2015;15(2):324–334. doi:10.1016/j.acme.2014.05.010
  • Bahrami M, Nikoo MF, Givi MKB. Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Mater Sci Eng A. 2015;626:220–228. doi:10.1016/j.msea.2014.12.009
  • Jha KK, Kesharwani R, Imam M. Microstructure, texture, and mechanical properties correlation of AA5083/AA6061/SiC composite fabricated by FSAM process. Mater Chem Phys. 2023;296:127210–127222. doi:10.1016/j.matchemphys.2022.127210
  • Srivastava M, Rathee S. Microstructural and microhardness study on fabrication of Al 5059/SiC composite component via a novel route of friction stir additive manufacturing. Mater Today Proc. 2021;39:1775–1780. doi:10.1016/j.matpr.2020.07.137
  • Prado R, Murr LE, Shindo DJ, et al. Tool wear in the friction-stir welding of aluminum alloy 6061 + 20% Al2O3: a preliminary study. Scr Mater. 2001;45(1):75–80. doi:10.1016/S1359-6462(01)00994-0
  • Acharya U, Roy BS, Saha SC. A study of tool wear and its effect on the mechanical properties of friction stir welded AA6092/17.5 Sicp composite material joint. Mater Today Proc. 2018;5(9):20371–20379. doi:10.1016/j.matpr.2018.06.412
  • Ashish B, Saini J, Sharma B. A review of tool wear prediction during friction stir welding of aluminium matrix composite. Trans Nonferrous Met Soc China. 2016;26(8):2003–2018. doi:10.1016/S1003-6326(16)64318-2
  • Ikhsan M, Syamsudin H, Suada M. Stiffened panel structural optimization on wing skin of “WHALE” aircraft with local and global buckling criteria. Journal of physics: conference series. IOP Publishing; 2018.
  • Averardi A, Cola C, Zeltmann SE, et al. Effect of particle size distribution on the packing of powder beds: a critical discussion relevant to additive manufacturing. Mater Today Commun. 2020;24:100964–100980. doi:10.1016/j.mtcomm.2020.100964
  • Salari E, Jahazi M, Khodabandeh A, et al. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater Des. 2014;58:381–389. doi:10.1016/j.matdes.2014.02.005
  • Fathi J, Ebrahimzadeh P, Farasati R, et al. Friction stir welding of aluminum 6061-T6 in presence of watercooling: analyzing mechanical properties and residual stress distribution. Int J Lightweight Mater Manuf. 2019;2(2):107–115. doi:10.1016/j.ijlmm.2019.04.007
  • Xu W, Liu JH, Chen DL, et al. Improvements of strength and ductility in aluminum alloy joints via rapid cooling during friction stir welding. Mater Sci Eng A. 2012;548:89–98. doi:10.1016/j.msea.2012.03.094
  • Kumar K, Kailas SV. The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A. 2008;485(1-2):367–374. doi:10.1016/j.msea.2007.08.013
  • Sutton MA, Yang B, Reynolds AP, et al. Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng A. 2002;323(1-2):160–166. doi:10.1016/S0921-5093(01)01358-2
  • Agilan M, Phanikumar G, Sivakumar D. Tensile behaviour and microstructure evolution in friction stir welded 2195–2219 dissimilar aluminium alloy joints. Weld World. 2022;66(2):227–237. doi:10.1007/s40194-021-01217-w
  • Da Silva A, Arruti E, Janeiro G, et al. Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater Des. 2011;32(4):2021–2027. doi:10.1016/j.matdes.2010.11.059
  • Sun W, Zhang W, Guo J, et al. Cracking behavior in tensile and bending test of underwater explosive-welded AZ31/Cu laminated composite. Theor Appl Fract Mech. 2019;103:102256–102263. doi:10.1016/j.tafmec.2019.102256
  • Hamdollahzadeh A, Bahrami M, Farahmand Nikoo M, et al. Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: the role of second pass processing. J Manuf Process. 2015;20:367–373. doi:10.1016/j.jmapro.2015.06.017
  • Jha KK, Kesharwani R, Imam M. Microstructural and micro-hardness study on the fabricated Al 5083-O/6061-T6/7075-T6 gradient composite component via a novel route of friction stir additive manufacturing. Mater Today Proc. 2022;56:819–825. doi:10.1016/j.matpr.2022.02.262
  • Bagheri B, Abbasi M. Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics. Adv Manuf. 2020;8(1):82–96. doi:10.1007/s40436-019-00288-9
  • Ogunsemi BT, Abioye TE, Ogedengbe TI, et al. A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments. J Mater Res Techno. 2021;11:1061–1089. doi:10.1016/j.jmrt.2021.01.070
  • Choudhury S, et al. Recent progress in solid-state additive manufacturing technique: friction stir additive manufacturing. Proceedings of the institution of mechanical engineers. Part E: J Process Mech Eng. 2022;237(2):467–491. doi:10.1177/09544089221107755
  • Mao Y, Ke L, Liu F, et al. Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Mater Des. 2014;62:334–343. doi:10.1016/j.matdes.2014.05.038
  • Jha KK, Kesharwani R, Imam M. Microstructure and mechanical properties correlation of FSAM employed AA5083/AA7075 joints. Trans Indian Inst Met. 2023;76(2):323–333. doi:10.1007/s12666-022-02672-9
  • Prangnell P, Heason C. Grain structure formation during friction stir welding observed by the ‘stop action technique’. Acta Mater. 2005;53(11):3179–3192. doi:10.1016/j.actamat.2005.03.044
  • van Huis M, Chen JH, Sluiter MHF, et al. Phase stability and structural features of matrix-embedded hardening precipitates in Al–Mg–Si alloys in the early stages of evolution. Acta Mater. 2007;55(6):2183–2199. doi:10.1016/j.actamat.2006.11.019
  • Ravi C, Wolverton C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater. 2004;52(14):4213–4227. doi:10.1016/j.actamat.2004.05.037
  • Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater. 1999;47(5):1537–1548. doi:10.1016/S1359-6454(99)00033-6
  • Ikeno KMS, Sato T. HRTEM study of nano-precipitation phases in 6000 series aluminum alloys. In: Mendez-Vilas Antonio, editor. Science, Technology and Education of Microscopy: an Overview. Formatex; 2003. p. 152–162.
  • Maisonnette D, Suery M, Nelias D, et al. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater Sci Eng A. 2011;528(6):2718–2724. doi:10.1016/j.msea.2010.12.011
  • Liu G, Murr LE, Niou C-S, et al. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scr Mater. 1997;37(3):355–361. doi:10.1016/S1359-6462(97)00093-6
  • Sato YS, Kokawa H, Enomoto M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A. 1999;30:2429–2437. doi:10.1007/s11661-999-0251-1
  • Reimann M, Gartner T, Suhuddin U, et al. Keyhole closure using friction spot welding in aluminum alloy 6061–T6. J Mater Process Technol. 2016;237:12–18. doi:10.1016/j.jmatprotec.2016.05.013
  • Abioye T, Zuhailawati H, Anasyida AS, et al. Investigation of the microstructure, mechanical and wear properties of AA6061-T6 friction stir weldments with different particulate reinforcements addition. J Mater Res Technol. 2019;8(5):3917–3928. doi:10.1016/j.jmrt.2019.06.055
  • Jamalian HM, Ramezani H, Ghobadi H, et al. Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints. J Manuf Process. 2016;21:180–189. doi:10.1016/j.jmapro.2015.12.008
  • Yan S, Chen L, Yob A, et al. Multifunctional metal matrix composites by friction stir additive manufacturing. J Mater Eng Perform. 2022;31(8):6183–6195. doi:10.1007/s11665-022-07114-7
  • Kumar PV, Reddy GM, Rao KS. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone–effect of post weld heat treatment and addition of boron carbide. Def Technol. 2015;11(2):166–173. doi:10.1016/j.dt.2015.01.002
  • Syn C, Lesuer D, Sherby O. Enhancing tensile ductility of a particulate-reinforced aluminum metal matrix composite by lamination with Mg-9% Li alloy. Mater Sci Eng A. 1996;206(2):201–207. doi:10.1016/0921-5093(95)09995-6
  • Dieter GE, Bacon D. Mechanical metallurgy. 3 New York: McGraw-hill; 1976.
  • Xu W, Liu J, Luan G, et al. Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy. Mater Des. 2009;30(9):3460–3467. doi:10.1016/j.matdes.2009.03.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.