156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigations of performance characteristics on direct metal laser sintered MONEL K-500 superalloy

ORCID Icon, , &
Pages 3111-3122 | Received 14 Mar 2023, Accepted 19 Jul 2023, Published online: 30 Jul 2023

References

  • AlMangour B. Additive manufacturing of emerging materials. 1st ed. Cham: Springer; 2018.
  • Gorsse T, Christopher Hutchinson M, et al. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4 V and high-entropy alloys. Sci Technol Adv Mater. 2017;18(1):584–610. DOI:10.1080/14686996.2017.1361305
  • Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A. 2006;428:148–158. DOI:10.1016/j.msea.2006.04.117
  • Körner C. Additive manufacturing of metallic components by selective electron beam melting- a review. Int Mater Rev. 2016;61(5):361–377. DOI:10.1080/09506608.2016.1176289
  • Nandy J, Sarangi H, Sahoo S. A review on direct metal laser sintering: process features and microstructure modeling. Lasers Manuf Mater Process. 2019;6:280–316. DOI:10.1007/s40516-019-00094-y
  • Daňa M, Mach I, March J. Mechanical properties of Inconel alloy 718 produced by 3D printing using DMLS. Manuf Technol. 2018;18:559–562. DOI:10.21062/ujep/137.2018/a/1213-2489/MT/18/4/559.
  • AlMangour B, Yang JM. Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM. Int J Adv Manuf Technol. 2017;90:119–126. DOI:10.1007/s00170-016-9367-9
  • Anush Raj B, Winowlin Jappes JT, Adam Khan M, et al. Direct metal laser sintered (DMLS) process to develop Inconel 718 alloy for turbine engine components. Optik. 2020;202:163735. DOI:10.1016/j.ijleo.2019.163735
  • Hadadzadeh A, Baxter C, Amirkhiz BS, et al. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: comparison between virgin and recycled powders. Addit Manuf. 2018;23:108–120.
  • Arjunan A, Baroutaji A, Ayyappan S, et al. Classification of biomaterial functionality. In: A-G Olabi, editor. Encyclopedia of smart materials. Elsevier; 2022. p. 86–102.
  • Robinson J, Stanford M, Arjunan A. Stable formation of powder bed laser fused 99.9% silver. Mater Today Commun. 2020;24:101195. DOI:10.1016/j.mtcomm.2020.101195
  • Robinson J, Arjunan A, Stanford M, et al. Effect of silver addition in copper-silver alloys fabricated by laser powder bed fusion in situ alloying. J Alloys Compd. 2021;857:157561. DOI:10.1016/j.jallcom.2020.157561
  • Arjunan A, Demetriou M, Baroutaji A, et al. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater. 2020;102:103517. DOI:10.1016/j.jmbbm.2019.103517
  • Greitemeier D, Dalle Donne C, Syassen F, et al. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4 V. Mater Sci Technol. 2016;32(7):629–634. DOI:10.1179/1743284715Y.0000000053
  • Lee J-R, Lee M-S, Chae H, et al. Effects of building direction and heat treatment on the local mechanical properties of direct metal laser sintered 15-5 PH stainless steel. Mater Charact. 2020;167:110468. DOI:10.1016/j.matchar.2020.110468
  • Mirkoohi E, Li D, Garmestani H, et al. Residual stress modeling considering microstructure evolution in metal additive manufacturing. J Manuf Process. 2021;68:383–397. DOI:10.1016/j.jmapro.2021.04.041
  • Alafaghani A, Qattawi A, Castañón MAG. Effect of manufacturing parameters on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals. Int J Adv Manuf Technol. 2018;99:2491–2507. DOI:10.1007/s00170-018-2586-5
  • Zhang Y, Zhang J. Finite element simulation and experimental validation of distortion and cracking failure phenomena in direct metal laser sintering fabricated component. Addit Manuf. 2017;16:49–57.
  • Xu X, Ding J, Ganguly S, et al. Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire arc additive manufacture process. J Mater Process Technol. 2019;265:201–209. DOI:10.1016/j.jmatprotec.2018.10.023
  • Lee T, Aoyagi K, Bian H, et al. The microstructure and mechanical properties of selective electron beam melting manufactured 9–12Cr ferritic/martensitic steel using N- and Ar-atomized powder. Addit Manuf. 2021;45:102075.
  • Zhang D, Niu W, Cao X, et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured inconel 718 superalloy. Mater Sci Eng A. 2015;644:32–40. DOI:10.1016/j.msea.2015.06.021
  • Sagar S, Zhang Y, Choi H-H, et al. Temperature-dependent Charpy impact property of 3D printed 15-5 PH stainless steel. Mater Sci Technol. 2021;37(2):190–201. DOI:10.1080/02670836.2021.1885094
  • Wang C, Tan X, Liu E, et al. Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater Des. 2018;147:157–166. DOI:10.1016/j.matdes.2018.03.035
  • Roy S, Silwal B, Nycz A, et al. Investigating the effect of different shielding gas mixtures on microstructure and mechanical properties of 410 stainless steel fabricated via large scale additive manufacturing. Addit Manuf. 2021;38:101821.
  • Long RS, Sun SN, Lian ZS. Crack restriction mechanism of thin wall metal parts fabricated by laser direct deposition shaping. Mater Sci Technol. 2016;32(6):523–539.
  • Li B, Zheng H, Han C, et al. Nanotwins-containing microstructure and superior mechanical strength of a Cu–9Al–5Fe–5Ni alloy additively manufactured by laser metal deposition. Addit Manuf. 2021;39:101825.
  • Rafi HK, Karthik NV, Gong H, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform. 2013;22:3872–3883. DOI:10.1007/s11665-013-0658-0
  • Raghavan S, Zhang B, Wang P, et al. Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy. Mater Manuf Process. 2017;32(14):1588–1595. DOI:10.1080/10426914.2016.1257805
  • Holland S, Wang X, Chen J, et al. Multiscale characterization of microstructures and mechanical properties of inconel 718 fabricated by selective laser melting. J Alloys Compd. 2019;784:182–194. DOI:10.1016/j.jallcom.2018.12.380
  • Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng A. 2018;735:182–190. DOI:10.1016/j.msea.2018.08.037
  • Xu Z, Cao L, Zhu Q, et al. Creep property of inconel 718 superalloy produced by selective laser melting compared to forging. Mater Sci Eng A. 2020;794:139947. DOI:10.1016/j.msea.2020.139947
  • Pei C, Shi D, Yuan H, et al. Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy inconel 718. Mater Sci Eng A. 2019;759:278–287. DOI:10.1016/j.msea.2019.05.007
  • Carter LN, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater Sci Technol. 2016;32(7):657–661. DOI:10.1179/1743284715Y.0000000108
  • Johannes S, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater. 2015;17:8. DOI:10.1002/adem.201400044
  • Li S, Wei Q, Shi Y, et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J Mater Sci Technol. 2015;31:946–952. DOI:10.1016/j.jmst.2014.09.020
  • Deng D, Peng RL, Brodin H, et al. Microstructure and mechanical properties of inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments. Mater Sci Eng A. 2018;713:294–306. DOI:10.1016/j.msea.2017.12.043
  • Salunkhe S, Rajamani D. 3 - Current trends of metal additive manufacturing in the defense, automobile, and aerospace industries. In: S Salunkhe, ST Amancio-Filho, J Paulo Davim, editor. Woodhead publishing reviews: mechanical engineering series, advances in metal additive manufacturing. Woodhead Publishing; 2023, p. 147–160.
  • Kang Y-J, Yang S, Kim Y-K, et al. Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured Inconel 718 alloy. Corros Sci. 2019;158:108082. DOI:10.1016/j.corsci.2019.06.030
  • AlMangour B, Luqman M, Grzesiak D, et al. Effect of processing parameters on the microstructure and mechanical properties of Co–Cr–Mo alloy fabricated by selective laser melting. Mater Sci Eng A. 2020;792:139456. DOI:10.1016/j.msea.2020.139456
  • Gradl PR, Greene SE, Protz C, et al. Additive manufacturing of liquid rocket engine combustion devices: a summary of process developments and hot-fire testing results. Proceedings of the Joint Propulsion Conference and American Institute of Aeronautics and Astronautics; 2018 July 9–11; Cincinnati, Ohio; 2018, p. 4625.
  • Xu J, Kontis P, Peng RL, et al. Modelling of additive manufacturability of nickel-based superalloys for laser powder bed fusion. Acta Mater. 2022;240:118307–118327. DOI:10.1016/j.actamat.2022.118307
  • Choi J-P, Shin G-H, Yang S, et al. Densification and microstructural investigation of inconel 718 parts fabricated by selective laser melting. Powder Technol. 2017;310:60–66. DOI:10.1016/j.powtec.2017.01.030
  • Chlebus E, Gruber K, Kuźnicka B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A. 2015;639:647–655. DOI:10.1016/j.msea.2015.05.035
  • Li A, Liu X, Yu B. Influence mechanism of processing parameters on size uniformity of 7075 aluminum alloy single tracks during liquid metal flow rapid cooling additive manufacturing. J Manuf Process. 2020;59:258–265. DOI:10.1016/j.jmapro.2020.09.074
  • Nie P, Ojo OA, Li Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 2014;77:85–95. DOI:10.1016/j.actamat.2014.05.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.