144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Fe addition on phase evolution, microstructure and properties of Ti50Ni50-XFeX alloy

, &
Pages 3134-3149 | Received 04 Jan 2023, Accepted 19 Jul 2023, Published online: 02 Aug 2023

References

  • Otsuka K, Ren X. Recent developments in the research of shape memory alloys. Intermetallics. 1999;7(5):511–528. DOI:10.1016/S0966-9795(98)00070-3
  • Duerig TW, Melton KN, Stöckel D. Engineering aspects of shape memory alloys butterworth. London: Heinemann; 1990.
  • Schetky LMD. Industrial applications of shape memory alloys in North America. Mater Sci Forum. 2000;327:9–16. DOI:10.4028/www.scientific.net/MSF.327-328.9
  • Fu D, Han G, Meng C. Size-controlled synthesis and photocatalytic degradation properties of nano-sized ZnO nanorods. Mater Lett. 2012;72:53–56. DOI:10.1016/j.matlet.2011.12.047
  • Lemanski JL, Krishnan VB, Mahadevan Manjeri R, et al. A low hysteresis NiTiFe shape memory alloy based thermal conduction switch. Am Inst Phys, AIP Conf Proc. 2006;824:3–10. DOI:10.1063/1.2192327
  • Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. DOI:10.1016/j.pmatsci.2004.10.001
  • Otsuka K, Wayman CM. Shape memory materials. New York: Cambridge Univ. Press; 1998.
  • Parida J, Mishra SC, et al. NiTi-based ternary alloys. Nickel-Titan Smart Hybrid Mater. 2022;1:191–213. DOI:10.1016/B978-0-323-91173-3.00020-1
  • Liu Y, Kohl M, Okutsu K, et al. A TiNiPd thin film microvalve for high temperature applications. Mater Sci Eng A. 2004;378(1-2):205–209. DOI:10.1016/j.msea.2003.10.369
  • Casalena L. Transformation and deformation characterization of NiTiHf and NiTiAu high temperature shape memory alloys. Microsc Microanal. 2015;21:157–158. DOI:10.1017/S1431927615003839
  • Meng XL, Zheng YF, Wang Z, et al. Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy. Mater Lett. 2000;45(2):128–132. DOI:10.1016/S0167-577X(00)00091-4
  • Raghavan V. Fe-Ni-Ti (iron-nickel-titanium). J Phase Equilibria Diffus. 2011;32:377–378. DOI:10.1007/s11669-011-9893-y
  • Salje EKH, Zhang H, Planes A, et al. Martensitic transformation B2-R in Ni-Ti-Fe: experimental determination of the landau potential and quantum saturation of the order parameter. J Phys Condens Matter. 2008;20(27):275216. DOI:10.1088/0953-8984/20/27/275216
  • De Keyzer J, Cacciamani G, Dupin N, et al. Thermodynamic modeling and optimization of the Fe-Ni-Ti system. Calphad Comput Coupl Ph Diagr Thermochem. 2009;33(1):109–123. DOI:10.1016/j.calphad.2008.10.003
  • Frenzel J, Pfetzing J, Neuking K, et al. On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni-Ti-Fe shape memory alloys. Mater Sci Eng A. 2008;481–482:635–638. DOI:10.1016/j.msea.2007.03.115
  • Elahinia MH, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci. 2012;57(5):911–946. DOI:10.1016/j.pmatsci.2011.11.001
  • Zanotti C, Giuliani P, Terrosu A, et al. Porous Ni-Ti ignition and combustion synthesis. Intermetallics. 2007;15(3):404–412. DOI:10.1016/j.intermet.2006.08.002
  • Moore JJ, Feng HJ. Combustion synthesis of advanced materials: part II. Classification, applications and modelling. Prog Mater Sci. 1995;39(4-5):275–316. DOI:10.1016/0079-6425(94)00012-3
  • Sadrnezhaad SK, Selahi AR, et al. Effect of mechanical alloying and sintering on Ni–Ti powders. Mater Manuf. Process. 2004;19(3):475–486. DOI:10.1081/AMP-120038656
  • Fellah M. The effect of milling time on structural friction and wear behavior of hot isostatically pressed Ti–Ni alloys for orthopedic applications. TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham; 2019, p. 865–875.
  • Fellah M, Abdul Samad M, Labaiz M, et al. Sliding friction and wear performance of the nano-bioceramic α-Al2O3 prepared by high energy milling. Tribol Int. 2015;91:151–159. DOI:10.1016/j.triboint.2015.07.006
  • Bertheville B. PM processing of single-phase NiTi shape memory alloys by VPCR process. Mater Trans. 2006;47(3):698–703. DOI:10.2320/matertrans.47.698
  • Abidi IH, Khalid FA. Sintering and morphology of porous structure in NiTi shape memory alloys for biomedical applications. Adv Mater Res. 2012;570:87–95. DOI:10.4028/www.scientific.net/AMR.570.87
  • Peña J, Solano E, Casals J, et al. Effect of the Ms transformation temperature on the wear behaviour of NiTi shape memory alloys for articular prosthesis. Biomed Mater Eng. 2005;15:289–293.
  • Liu R, Li DY. Experimental studies on tribological properties of pseudoelastic TiNi alloy with comparison to stainless steel 304. Metall Mater Trans A. 2000;31(11):2773–2783. DOI:10.1007/BF02830337
  • Ye HZ, Li DY, Eadie RL. Influences of porosity on mechanical and wear performance of pseudoelastic TiNi-matrix composites. J Mater Eng Perform. 2001;10(2):178–185. DOI:10.1361/105994901770345196
  • Zhang C, Farhat ZN. Sliding wear of superelastic TiNi alloy. Wear. 2009;267(1-4):394–400. DOI:10.1016/j.wear.2008.12.093
  • Li DY. A new type of wear-resistant material: pseudo-elastic TiNi alloy. Wear. 1989;221:116–123.
  • Liang YN, Li SZ, Jin YB, et al. Wear behavior of a TiNi alloy. Wear. 1996;198(1-2):236–241. DOI:10.1016/0043-1648(96)06989-X
  • Clayton P. Tribological behavior of a titanium-nickel alloy. Wear. 1993;162-164:202–210. DOI:10.1016/0043-1648(93)90502-D
  • Velmurugan C, Senthilkumar V. Optimization of spark plasma sintering parameters for NiTiCu shape memory alloys. Mater Manuf Process. 2019;34(4):369–378. DOI:10.1080/10426914.2018.1512118
  • Huang TS, Ou SF, Kuo C-H, et al. Effects of thermomechanical treatment on phase transformation of the Ti50Ni49W1 shape memory alloy. Metals (Basel). 2020;10(4):527. DOI:10.3390/met10040527
  • De Keyzer J. Thermodynamic modeling of the Fe-Ni-Ti system: a multiple sublattice approach; 2008.
  • Bolokang AS, Mathabathe MN, Mathebula C, et al. Thermal analysis and morphology of the ball-milled Ti-Ni powder. Mater Today Proc. 2021;38:503–507. DOI:10.1016/j.matpr.2020.02.351
  • Neves F, Fernandes FMB, Martins I, et al. Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying. J Alloys Compd. 2011;509:S271–S274. DOI:10.1016/j.jallcom.2010.11.036
  • Zhou N, Shen C, Wagner MF-X, et al. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni. Acta Mater. 2010;58(20):6685–6694. DOI:10.1016/j.actamat.2010.08.033
  • Parida J, Mishra SC, Behera A. Synthesis and characterization of Ti50Ni(50−X)FeX alloy produced by mechanical alloying and pressure-less sintering. Met Mater Int. 2023;29:1145–1164.
  • Whitney M, Corbin SF, Gorbet RB, et al. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater. 2008;56(3):559–570. DOI:10.1016/j.actamat.2007.10.012
  • Shi LB, Wang C, Ding HH, et al. Laboratory investigation on the particle-size effects in railway sanding: comparisons between standard sand and its micro fragments. Tribol Int. 2020;146:106259. DOI:10.1016/j.triboint.2020.106259
  • Singh S, Gangwar S, Yadav S. A review on mechanical and tribological properties of micro/nano filled metal alloy composites. Mater Today Proc. 2017;4(4):5583–5592. DOI:10.1016/j.matpr.2017.06.015
  • Waqar S, Wadood A, Mateen A., et al. Effects of Ni and Cr addition on the wear performance of NiTi alloy. Int J Adv Manuf Technol. 2020;108:625–634. DOI:10.1007/s00170-020-05380-0
  • Mortazavi V, Khonsari MM. On the prediction of transient wear. J Tribol. 2016;138(4): 041604. DOI:10.1115/1.4032843

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.