174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and properties of AlCrxFeNi1.2Cu0.8 high-entropy alloys at high temperature

ORCID Icon, , , , , & show all
Pages 3167-3176 | Received 07 Aug 2022, Accepted 21 Apr 2023, Published online: 02 Aug 2023

References

  • Wang MZ, Wen ZQ, Ma B, et al. Enhancing the strength of AlCrFeNi HEAs via tailoring aluminum content and optimal aging treatment. J Alloys Compd. 2022;893:162242. doi:10.1016/j.jallcom.2021.162242.
  • Du CC, Hu L, Pan QH, et al. Effect of Cu on the strengthening and embrittling of an FeCoNiCrxCu HEA. Mater Sci Eng A. 2022;832:142413. doi:10.1016/j.msea.2021.142413.
  • Wang RX, Tang Y, Lei ZF, et al. Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Mater Des. 2022;213:110356. doi:10.1016/j.matdes.2021.110356.
  • Moghaddam AO, Sudarikov M, Shaburova N, et al. High temperature oxidation resistance of W-containing high entropy alloys. J Alloys Compd. 2021;897:162733. doi:10.1016/j.jallcom.2021.162733.
  • Garip Y, Ergin N, Ozdemir O. Resistance sintering of CoCrFeNiAlx (x = 0.7, 0.85, 1) high entropy alloys: microstructural characterization, oxidation and corrosion properties. J Alloys Compd. 2021;877:160180. doi:10.1016/j.jallcom.2021.160180.
  • Wang Y, Jin JS, Zhang M, et al. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution. J Alloys Compd. 2021;858:157712. doi:10.1016/j.jallcom.2020.157712.
  • Muftah W, Allport J, Vishnyakov V. Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surf Coat Technol. 2021;422:127486. doi:10.1016/j.surfcoat.2021.127486.
  • Chai BB, Xiong J, Guo ZX, et al. Structure and high temperature wear characteristics of CVD coating on HEA-bonded cermet. Ceram Int. 2019;45(15):19077–19085. doi:10.1016/j.ceramint.2019.06.152.
  • Moazzen P, Toroghinejad MR, Zargar T, et al. Investigation of hardness, wear and magnetic properties of NiCoCrFeZrx HEA prepared through mechanical alloying and spark plasma sintering. J Alloys Compd. 2022;892:161924. doi:10.1016/j.jallcom.2021.161924.
  • Malatji N, Popoola API, Lengopeng T, et al. Tribological and corrosion properties of laser additive manufactured AlCrFeNiCu high entropy alloy. Mater Today Proc. 2020;28(2):944–948. doi:10.1016/j.matpr.2019.12.330.
  • Li AM, Zhang XY. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements. Acta Metall Sin (Engl Lett). 2009;22(3):219–224. doi:10.1016/S1006-7191(08)60092-7.
  • Erdogan A, Sunbul SE, Icin K, et al. Microstructure, wear and oxidation behavior of AlCrFeNix (x = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum. 2021;187:110143. doi:10.1016/j.vacuum.2021.110143.
  • Wang X, Zhang YP, Ma XL. High temperature deformation and dynamic recrystallization behavior of AlCrCuFeNi high entropy alloy. Mater Sci Eng A. 2020;778:139077. doi:10.1016/j.msea.2020.139077.
  • Pi JH, Pan Y, Zhang H, et al. Microstructure and properties of AlCrFeCuNix (0.6 ≤ x≤1.4) high-entropy alloys. Mater Sci Eng A. 2012;534:228–233. doi:10.1016/j.msea.2011.11.063.
  • Liu HK. Study on the properties and structure of metal Cr toughened ladle breathable bricks. Tianjin: Tianjin University; 2008.
  • Li Y, Song B, Mao H. Cu precipitation law in Fe-Cu alloy system. J Univ Sci Technol Beijing. 2009;5:579–584. doi:10.13374/j.issn1001-053x.2009.05.009.
  • Zhang Y. Development of dendrite-amorphous composite materials. Aeronaut Manuf Technol. 2010;06:68–70. doi:10.16080/j.issn1671-833x.2010.06.003.
  • Wenjuan G. Research on high temperature oxidation resistance and corrosion resistance of CuxCrFeNiTi high entropy alloy. Xiangtan City, Hunan Province: Xiangtan University; 2019: 001029.
  • Xian X, Lin L, Zhong Z, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Mater Sci Eng A. 2018;713:134–140. doi:10.1016/j.msea.2017.12.060.
  • Wei G, Zhuhuan Y, Yawen Y, et al. Effect of Cr on microstructure and mechanical properties of FeCoNiAlCr(x) high entropy alloy. Mater Eng. 2023;51(02):91–97.
  • Zhou S, Liaw PK, Xue Y, et al. Temperature-dependent mechanical behavior of an Al0.5Cr0.9FeNi2.5V0.2 high-entropy alloy. Appl Phys Lett. 2021;119(12):121902. doi:10.1063/5.0064821
  • Aliyu A, Srivastava C. Corrosion behavior and protective film constitution of AlNiCoFeCu and AlCrNiCoFeCu high entropy alloy coatings. Surf Interfaces. 2021;27:101481. doi:10.1016/j.surfin.2021.101481

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.