83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrogen damage behaviour of X80 steel under high voltage direct current interference

, , , , , , , & show all
Pages 3177-3187 | Received 18 May 2023, Accepted 26 Jul 2023, Published online: 17 Aug 2023

References

  • Larruskain D, Zamora I, Mazón A, et al. Transmission and distribution networks: AC versus DC. 9th Spanish-Portuguese Congress on Electrical Engineering; Marbella: AEDIE and APDEE; 2005. p. 245.
  • Tiku D. DC power transmission: mercury-arc to thyristor HVDC valves [history]. IEEE Power Energy Mag. 2014;12:76–96. doi:10.1109/MPE.2013.2293398
  • Rudervall R, Charpentier J, Sharma R. High voltage direct current (HVDC) transmission systems technology review paper. Washington D.C. Energy Week; 2000, Mar 7–8.
  • Sutton S, Lewin P, Swingler S. Review of global HVDC subsea cable projects and the application of sea electrodes. Int J Electr Power Energy Syst. 2017;87:121–135. doi:10.1016/j.ijepes.2016.11.009
  • Li G. Analysis on commutation failures in shandong multi-infeed HVDC system. Jinan: Shandong University; 2015.
  • Zhao W, Zeng N. Development history of HVDC in China. Beijing: China Electric Power Press; 2017. p. 1–166.
  • Jiang Z, Dong S, Liu G, et al. Research progress on interference and protection of HVDC transmission system to buried pipelines. Equip Environ Eng. 2021;18(04):9–20. doi:10.7643/issn.1672-9242.2021.04.002
  • Feng Y, Li H, Han L, et al. Technical progress and prospect of oil well pipe localization in China. Pet Sci Bullet. 2022;7(02):229–241. doi:10.3969/j.issn.2096-1693.2022.02.021
  • Cao G, Wu G, Li C, et al. Study on the rule of influence of subway interference on the West-East gas transmission line and the adaptability of protective measures. Proceedings of the 11th National Congress on Corrosion and Protection; 2021. p. 623–624. doi:10.26914/c.cnkihy.2021.016185
  • Jing Z, Cao G, Ge C, et al. Study on the mechanism and influencing factors of HVDC interference. Corrosion 2017. Houston: NACE; 2017; No.9293.
  • Bi W, Chen H, Li Z, et al. HVDC interference to buried pipeline: numerical modeling and continuous P/S potential monitoring. Corrosion 2016. Vancacver: NACE; 2016; No.7714.
  • Nicholson P. High voltage direct current interference with underground/underwater pipelines. Proceedings of the Corrosion 2010. San Antonio: NACE International; 2010; No.10102.
  • Gong Y, Xue C, Yuan Z, et al. Advanced analysis of HVDC electrodes interference on neighboring pipelines. J Power Energy Eng. 2015;3:332–341. doi:10.4236/jpee.2015.34045
  • Qin R, Du Y, Peng G, et al. High voltage direct current interference on buried pipelines: case study and mitigation design. Corrosion 2017. New Orleans: NACE; 2017. p. 1–11.
  • Li X. High voltage direct current transmission system. Beijing: Science Press; 2010.
  • Qin R, Du Y, Lu M, et al. Study on the change rule of interference parameters and corrosion behavior of X80 steel in guangdong soil under HVDC interference. J Met. 2018;54(06):886–894. doi:10.11900/0412.1961.2017.00311
  • Verhiel A. The effects of high-voltage DC power transmission systems on buried metallic pipelines. IEEE Trans Ind Gen Appl. 1971;IGA-7(3):403–415. doi:10.1109/TIGA.1971.4181313
  • Wang Z, Wang W, Wang F, et al. Research on the corrosion effect of the UHVDC ground electrode current on the metal pipelines. 2016 IEEE International Conference on Power and Renewable Energy (ICPRE); 2016. p. 48–51. doi:10.1109/ICPRE.2016.7871147
  • Li Z. Field test and analysis of interference of high voltage/UHVDC transmission system to buried steel pipeline. Corros Protect. 2017;38(02):142–146. doi:10.11973/fsyfh-201702012
  • Tan C, Xu G, Xu M, et al. The impact of grounding pole monopole earth circuit current operation on natural gas pipelines. Oil Gas Storage Transp. 2018;37(06):670–675. doi:10.6047/j.issn.1000-8241.2018.06.012
  • Yuan J, Cao X, Huang Y, et al. Damage behavior of X80M pipeline steel caused by negative interference of HVDC. Oil Pipes Instrum. 2020;6(06):29–33. doi:10.19459/j.cnki.61-1500/te.2020.06.007
  • Li K, Gu Q, Jiang Y, et al. Hydrogen embrittlement sensitivity of X80 pipeline steel under negative interference of UHVDC discharge. Corros Protect. 2020;41(04):28–32. doi:10.11973/fsyfh-202004006
  • Xu Z, Du Y, Du Y, et al. Research status of HVDC grounding electrode interference on buried metal pipeline. Corros Protect. 2020;41(03):63–69. doi:10.11973/fsyfh-20200312
  • Feng Y, Ji L, Li W, et al. Development and application progress and prospect of X80 pipeline steel and steel pipe in China. Oil Gas Storage Transp. 2020;39(06):612–622. doi:10.6047/j.issn.1000-8241.2020.06.002
  • Cheng Y. Stress corrosion cracking of pipeline. Canada: John Wiley&Sons, Hoboken, New Jersey, Inc.; 2013. doi:10.1002/9781118537022
  • Zhang S, Cheng Y, Feng X, et al. Performance characteristics and technical challenges of X80 pipeline steel. Oil Gas Storage Transp. 2019;38(5):481–495. doi:10.6047/j.issn.1000-8241.2019.05.001
  • Yang Y, Hu J, Ding R, et al. Hydrogen embrittlement behaviour of X80 steel in different Xinjiang soil environments. Corros Protect. 2017;38:50–53. doi:10.11973/fsyfh-201701011
  • Young A, Andrews R. Preventing girth weld failure in pipeline: measurement of loads and application of assessment methods. Proceedings of the 2020 13th International Pipeline Conference, IPC2020-9551. doi:10.1115/IPC2020-9551
  • Alefled G, Volkl J. Hydrogen in metals II. Berlin: Springer-Verlag; 1978.
  • Kan B, Yang Z, Wang Z, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel. Mater Sci Technol. 2017;33(13):1539–1547. doi:10.1080/02670836.2017.1325562
  • Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A. 2001;32A(2):339–347. doi:10.1007/s11661-001-0265-9
  • Nagumo M. Hydrogen related failure of steels-a new aspect. Mater Sci Technol. 2004;20:940–950. doi:10.1179/026708304225019687
  • Groeneveld T, Elsea A. Mechanical testing methods, in proceedings of hydrogen embrittlement testing. ASTM STP. 1974;543:11–19. doi:10.1520/STP38925S
  • Tiwari G, Bose A, Chakravartty J, et al. A study of internal hydrogen embrittlement of steels. Mater Sci Eng. 2000;A286:269–281. doi:10.1016/S0921-5093(00)00793-0
  • Xu Z, Zhang P, Zhang B, et al. Effect of tensile stress on the hydrogen adsorption of X70 pipeline steel. Int J Hydrogen Energy. 2022;47:21582–21595. doi:10.1016/j.ijhydene.2022.04.266
  • Wang W, Hu J, Yuan X, et al. Understanding the effect of tensile stress on erosion-corrosion of X70 pipeline steel. Constr Build Mater. 2022;342:Part B, No.127972. doi:10.1016/j.conbuildmat.2022.127972
  • GB/T 6920. Water quality-determination of pH value-glass electrode method. Chinese National Standard; 1986.
  • GB/T 11896. Water quality-determination of chloride-silver nitrate titration method. Chinese National Standard; 1989.
  • GB/T 11905. Water quality-determination of calcium and magnesium-atomic absorption spectrophotometric method. Chinese National Standard; 1989.
  • ASTM G129. Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking. Annual Book of ASTM Standards; 2013.
  • Tan B, Pan Z, Wen X. Calculation of DC current distribution in AC systems on ground electrode for HVDC. 2007 Academic Annual Conference of High Voltage Special Committee of China Institute of Electrical Engineering. 2007 Nov 30–Dec 3; Shenzhen, China; 2007.
  • Sun J, Cao G, Han C, et al. Influence of ground pole of HVDC transmission system on west-east gas transmission pipeline. Corros Protect. 2017;38(08):631–636. doi:10.11973/fsyfh-201708012
  • Liu L, Yu Z, Jiang Z, et al. Observation research on the effect of UHVDC grounding current on buried pipelines. Energies. 2019;12(7):1279. doi:10.3390/en12071279
  • Li X, Ma X, Zhang J, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention. Acta Metall Sin (Eng Lett). 2020;33:759–773. doi:10.1007/s40195-020-01039-7
  • Liu Q, Atrens A. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels. Corros Rev. 2013;31(3-6):85–103. doi:10.1515/corrrev-2013-0023
  • Wang S, Giuliani F, Britton T. Microstructure and formation mechanisms of δ-hydrides in variable grain size zircaloy-4 studied by electron backscatter diffraction. Acta Mater. 2019;169:76–87. doi:10.1016/j.actamat.2019.02.042
  • Guedes D, Oudriss A, Frappart S, et al. The influence of hydrostatic stress states on the hydrogen solubility in martensitic steels. Scr Mater. 2014;84-85:23–26. doi:10.1016/j.scriptamat.2014.04.006
  • Bastien P, Azou P. In: Proceedings of the 1st World Metallurgical Congress, ASM, Cleveland, OH; 1951.
  • Oriani R, Josephic P. Effects of hydrogen on the plastic properties of medium-carbon steels. Metal Trans. 1980;11A(11):1809–1820. doi:10.1007/BF02655096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.