142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The densification, microstructure, and mechanical properties of (TiB2+SiC)/AlSi10Mg composites manufactured by LPBF

ORCID Icon, , , , &
Pages 3188-3197 | Received 06 Dec 2022, Accepted 27 Jul 2023, Published online: 10 Aug 2023

Reference

  • Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 2015;74:401–477. doi:10.1016/j.pmatsci.2015.03.002
  • Yu WH, Sing SL, Chua CK, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog. Mater. Sci. 2019;104:330–379. doi:10.1016/j.pmatsci.2019.04.006
  • Xi LX, Gu DD, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic. J. Mater. Res. Technol. 2020;9:2611–2622. doi:10.1016/j.jmrt.2020.04.059
  • Liu XL, Zhuo LC, Wang ZY, et al. Effects of processing parameters and post-process heat treatment on selective laser melted SiC/AlSi10Mg composites. Mater. Lett. 2022;308:131254. doi:10.1016/j.matlet.2021.131254
  • Wang JH, Liu T, Luo LS, et al. Selective laser melting of high-strength TiB2/AlMgScZr composites: microstructure, tensile deformation behavior, and mechanical properties. J. Mater. Res. Technol. 2022;16:786–800. doi:10.1016/j.jmrt.2021.11.150
  • Cao Y, Lin X, Wang QZ, et al. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg. J. Mater. Res. Technol. 2021;62:162. doi:10.1016/j.jmst.2020.04.066.
  • Wang P, Eckert J, Prashanth KG, et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. T. Nonferr. Metal. Soc. 2020;30:2001–2034. doi:10.1016/S1003-6326(20)65357-2
  • Dong ZC, Xua MC, Guo HW, et al. Microstructural evolution and characterization of AlSi10Mg alloy manufactured by selective laser melting. J. Mater. Res. Technol. 2022;17:2343–2354. doi:10.1016/j.jmrt.2022.01.129
  • Lu QH, Ou YL, Zhang PL, et al. Fatigue performance and material characteristics of SiC/AlSi10Mg composites by selective laser melting. Mater Sci Eng A. 2022;858:144163. doi:10.1016/j.msea.2022.144163
  • Ben DD, Ma YR, Yang HJ, et al. Heterogeneous microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy. Mater Sci Eng A. 2020;798:140109. doi:10.1016/j.msea.2020.140109
  • Chen HX, Patel S, Vlasea M, et al. Enhanced tensile ductility of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scripta Mater. 2022;221:114954. doi:10.1016/j.scriptamat.2022.114954
  • Liu MN, Wei KW, Zeng XY. High power laser powder bed fusion of AlSi10Mg alloy: effect of layer thickness on defect, microstructure and mechanical property. Mater Sci Eng A. 2022;842:143107. doi:10.1016/j.msea.2022.143107
  • Albu M, Krisper R, Lammer J, et al. Microstructure evolution during in-situ heating of AlSi10Mg alloy powders and additive manufactured parts. Addit. Manuf. 2020;36:101605. doi:10.1016/j.addma.2020.101605.
  • Xue G, Ke L, Zhu HH, et al. The significant impact of grain structure on large strain-rate sensitivity of ultrafine-grained low alloy steel under nanoscale deformation: experimental and theoretical analysis. Mater Sci Eng A. 2019;764:138–146. doi:10.1016/j.msea.2019.04.028
  • Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Addit. Manuf. 2020;34:101378. doi:10.1016/j.addma.2020.101378.
  • Chen Y, Song SQ, Zhu S, et al. Selective laser remelting of in-situ Al2O3 particles reinforced AlSi10Mg matrix composite: densification, microstructure and microhardness. Vacuum. 2021;191:110365. doi:10.1016/j.vacuum.2021.110365
  • Feng Z, Tan H, Fang YB, et al. Selective laser melting of TiB2/AlSi10Mg composite: processability, microstructure and fracture behavior. J. Mater. Process. Tech. 2022;299:117386. doi:10.1016/j.jmatprotec.2021.117386
  • Dai DH, Gu DD, Xia MJ, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf. Coat. Tech. 2018;349:279–288. doi:10.1016/j.surfcoat.2018.05.072
  • Liu YX, Wang RC, Peng CQ, et al. Microstructural evolution and mechanical performance of in-situ TiB2/AlSi10Mg composite manufactured by selective laser melting. J. Alloy. Compd. 2021;853:157287. doi:10.1016/j.jallcom.2020.157287
  • Xi X, Chen B, Tan CW, et al. Microstructure and mechanical properties of SiC reinforced AlSi10Mg composites fabricated by laser metal deposition. J. Manuf. Process. 2020;58:763–774. doi:10.1016/j.jmapro.2020.08.073
  • Zhou Y, Lin M, Liu CZ, et al. Enhancing mechanical properties of uniformly distributed nano TiB2/2024 Al composite rolling sheet by pre-stretch aging. J. Alloy. Compd. 2022;913:165172. doi:10.1016/j.jallcom.2022.165172
  • Xiao YK, Chen H, Bian ZY, et al. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles. J. Mater. Res. Technol. 2022;109:254. doi:10.1016/j.jmst.2021.08.030.
  • Xie HB, Zhang JL, Li FL, et al. Selective laser melting of SiCp/Al composites: densification, microstructure, and mechanical and tribological properties. Ceram. Int. 2021;47:30826–30837. doi:10.1016/j.ceramint.2021.07.263
  • Yi JC, Zhang XW, Rao JH, et al. In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2 + TiC)/AlSi10Mg composites prepared by SLM-CS processing. J. Alloy. Compd. 2021;857:157553. doi:10.1016/j.jallcom.2020.157553
  • Li RD, Shi YS, Wang ZG, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 2010;256:4350–4356. doi:10.1016/j.apsusc.2010.02.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.