189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on microstructure and mechanical properties of boron-modified 13Cr5Ni2Mo by powder-pack boriding

, , , , , , , & show all
Pages 3209-3219 | Received 04 Feb 2023, Accepted 02 Aug 2023, Published online: 20 Aug 2023

References

  • Zappa S, Hoyos J, Tufaro L, et al. In-situ X-ray diffraction analysis of reverted austenite in supermartensitic stainless steel weld deposits. Forces in Mechanics. 2022;6:100067. doi:10.1016/j.finmec.2021.100067
  • Srinivasan PB, Sharkawy S, Dietzel W. Environmental cracking behavior of submerged arc-welded supermartensitic stainless steel weldments. J Mater Eng Perform. 2004;13:232–236. doi:10.1361/10599490418433
  • De Sanctis M, Lovicu G, Valentini R, et al. Microstructural features affecting tempering behavior of 16Cr-5Ni supermartensitic steel. Metall Mat Trans A. 2015;46:1878–1887. doi:10.1007/s11661-015-2811-x
  • Yonggang Z, Wei L, Yueming F, et al. Influence of microstructure on the corrosion behavior of super 13Cr martensitic stainless steel under heat treatment. Mat Charact. 2021;75:111066.
  • Villa M, Niessen F, Somers M. In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of steel. Metall Mat Trans A. 2017;49(1):1–13.
  • Niessen F, Villa M, Danoix F, et al. In-situ analysis of redistribution of carbon and nitrogen during tempering of low interstitial martensitic stainless steel. Scr Mater. 2018;154:216–219. doi:10.1016/j.scriptamat.2018.06.004
  • Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:140023. doi:10.1016/j.msea.2020.140023
  • Tavares S, Almeida B, Correa D, et al. Failure of super 13Cr stainless steel due to excessive hardness in the welded joint. Eng Fail Anal. 2018;91:92–98. doi:10.1016/j.engfailanal.2018.04.018
  • Ma X, Wang L, Liu C, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng: A. 2012;539:271–279. doi:10.1016/j.msea.2012.01.093
  • Sigolo E, Soyama J, Zepon G, et al. Wear resistant coatings of boron-modified stainless steels deposited by plasma transferred arc. Surf Coat Technol. 2016;302:255–264. doi:10.1016/j.surfcoat.2016.06.023
  • Zepon G, Nascimento A, Kasama A, et al. Design of wear resistant boron-modified supermartensitic stainless steel by spray forming process. Mater Des. 2015;83:214–223. doi:10.1016/j.matdes.2015.06.020
  • Ramoul C, Ghelloudj O, Gharbi A, et al. Plastic deformation effect on wear and corrosion resistance of super martensitic stainless steel. J Bio Tribo Corr. 2021;7:1–8. doi:10.1007/s40735-021-00553-0
  • Kurelo BCS, de Souza GB, Da Silva SLR, et al. Plasma nitriding of HP13Cr supermartensitic stainless steel. Appl Surf Sci. 2015;349:403–414. doi:10.1016/j.apsusc.2015.04.202
  • Kurelo BCS, de Oliveira WR, Serbena FC, et al. Surface mechanics and wear resistance of supermartensitic stainless steel nitrided by plasma immersion ion implantation. Surf Coat Technol. 2018;353:199–209. doi:10.1016/j.surfcoat.2018.08.079
  • Fernandes FAP, Picone CA, Totten GE, et al. Corrosion behavior of plasma nitrided and nitrocarburized supermartensitic stainless steel. Mater Res. 2018;21(3):1–9. doi:10.1590/1980-5373-MR-2016-0793.
  • Kumar SV, Raj GS, Prince M. Effects of pack boriding and induction boriding on the dry sliding wear behavior of high speed steel. Mater Today Proc. 2022;59:1–6.
  • Taktak S. Tribological behaviour of borided bearing steels at elevated temperatures. Surf Coat Technol. 2006;201(6):2230–2239. doi:10.1016/j.surfcoat.2006.03.032
  • Gök MS, Küçük Y, Erdoğan A, et al. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures. Surf Coat Technol. 2017;328:54–62. doi:10.1016/j.surfcoat.2017.08.008
  • Martini C, Palombarini G, Carbucicchio M. Mechanism of thermochemical growth of iron borides on iron. J Mat Sci. 2004;39:933–937. doi:10.1023/B:JMSC.0000012924.74578.87
  • García-Léon RA, Martínez-Trinidad J, Campos-Silva I, et al. Mechanical characterization of the AISI 316L alloy exposed to boriding process. Dyna. 2020;87:34–41. doi:10.15446/dyna.v87n213.82924
  • Kulka M, Makuch N, Piasecki A. Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surf Coat Technol. 2017;325:515–532. doi:10.1016/j.surfcoat.2017.07.020
  • Azakli Y, Tarakci M. Microstructural characterization of borided binary Fe–W alloys. Surf Eng. 2016;34(1):1–8. doi:10.1080/02670844.2016.1263712.
  • Sen U, Sen S, Yilmaz F. An evaluation of some properties of borides deposited on boronized ductile iron. J Mat Process Technol. 2004;148(1):1–7. doi:10.1016/j.jmatprotec.2004.01.015
  • Sen U, Sen S, Yilmaz F. Structural characterization of boride layer on boronized ductile irons. Surf Coat Technol. 2004;176(2):222–228. doi:10.1016/S0257-8972(03)00731-X
  • Bican O, Bayca SU, Ocak-Araz S, et al. Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of AISI 5140 steel. Surf Rev Lett. 2020;27(6):1950157. doi:10.1142/S0218625X19501579
  • Gunes I, Kayali Y, Ulu S. Investigation of surface properties and wear resistance of borided steels with different B 4 C mixtures. Indian J Eng Mater Sci. 2012;19:397–402.
  • Delai O, Xia C, Shiqiang L. Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: experiments and modeling. J Mater Res Technol. 2021;11:1272–1280. doi:10.1016/j.jmrt.2021.01.109
  • Belaid M, Fares M, Assalla O, et al. -Surface characterization of modified cold work tool steel treated by powder-pack boronizing. Material wissenschat und Werkstofftechnik. 2022;53:15–38. doi:10.1002/mawe.202100117
  • Makucha N, Kulkaa M, Dziarskia P, et al. The influence of chemical composition of Ni-based alloys on microstructure and mechanical properties of plasma paste borided layers. Surf Coat Technol. 2019;367:187–202. doi:10.1016/j.surfcoat.2019.03.042
  • Vidakis N, Antoniadis A, Bilalis N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. JMater Process Technol. 2003;143:481–485. doi:10.1016/S0924-0136(03)00300-5
  • Ucar N, Yigit M, Calik A. Metallurgical characterization and kinetics of borided 34CrNiMo6 steel. Adv Mater Sci. 2020;20:38–48. doi:10.2478/adms-2020-0021
  • Tlili S, Beliardouh NE, Ramoul CE, et al. Thermal treatment effect on tribological and corrosion performances of 13Cr5Ni2Mo super-martensitic stainless steel. Tribol Ind. 2018;40:433–439. doi:10.24874/ti.2018.40.03.09
  • Ninham A, Hutchings I. On the morphology of thermochemically produced Fe2B/Fe interfaces. J Vac Sci Technol. 1986;4:2827–2831. doi:10.1116/1.573686
  • Carbucicchio M, Palombarini G. Iron-boron reaction products depending on the base alloy composition. J Mat Sci Lett. 1984;3:1046–1048. doi:10.1007/BF00719759
  • Kayali Y, Güneş İ, Ulu S. Diffusion kinetics of borided AISI 52100 and AISI 440C steels. Vacuum. 2012;86:1428–1434. doi:10.1016/j.vacuum.2012.03.030
  • Yusuf K, Sukru T. Characterization and Rockwell-C adhesion properties of chromium-based borided steels. J Adhes Sci Technol. 2015;29:2065–2075. doi:10.1080/01694243.2015.1052617
  • Ozdemir O, Omar MA, Usta M, et al. An investigation on boriding kinetics of AISI 316 stainless steel. Vacuum. 2008;83:175–179. doi:10.1016/j.vacuum.2008.03.026
  • Bjurström T. Röntgenanalyse der systeme eisen-bor, kobalt-bor und nickel-bor. Almqvist and Wiksell. 1933.
  • Okada S, Atoda T, Higashi I. Structural investigation of Cr2B3, Cr3B4, and CrB by single-crystal diffractometry. J Solid State Chem. 1987;68(1):61–67. doi:10.1016/0022-4596(87)90285-4
  • Havinga EE, Damsma H, Hokkeling P. Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results. J Less-Common Met. 1972;27:69–186.
  • Lei X, Feng Y, Zhang J, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel. Electrochim Acta. 2016;191:640–650. doi:10.1016/j.electacta.2016.01.094
  • Ennis BL, Jimenez-Melero E, Atzema EH, et al. Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel. Int J Plast. 2017;88:126–139. doi:10.1016/j.ijplas.2016.10.005
  • Şahin S. Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. J Mater Process Technol. 2009;209:1736–1741. doi:10.1016/j.jmatprotec.2008.04.040
  • Çetin M, Günen A, Kalkandelen M, et al. Microstructural, wear and corrosion characteristics of boronized AISI 904L superaustenitic stainless steel. Vacuum. 2021;187:110145. doi:10.1016/j.vacuum.2021.110145
  • Taktak S. Some mechanical properties of borided AISI H13 and 304 steels. Mater Des. 2007;28:1836–1843. doi:10.1016/j.matdes.2006.04.017
  • Mertgenc E, Kesici OF, Kayali Y. Investigation of wear properties of borided austenitic stainless steel different temperatures and times. Mater Res Express. 2019;6:076420. doi:10.1088/2053-1591/ab119c
  • Kayali Y, Büyüksaǧiş A, Yalçin Y. Corrosion and wear behaviors of boronized AISI 316L stainless steel. Met Mater Inter. 2013;19:1053–1061. doi:10.1007/s12540-013-5019-x
  • Zong X, Jiang W, Fan Z. Characteristics and wear performance of borided AISI 440C martensitic stainless steel. Mater Express. 2018;8(6):500–510. doi:10.1166/mex.2018.1463
  • García-Leon RA, Martínez-Trinidad J, Zepeda-Bautist R, et al. Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: a statistical analysis. Tribol Inter. 2021;157:106885. doi:10.1016/j.triboint.2021.106885
  • Hernández-Sánchez E, Domínguez-Galicia YM, Orozco-Álvarez C, et al. A study on the effect of the boron potential on the mechanical properties of the borided layers obtained by boron diffusion at the surface of AISI 316L steel. Adv Mater Sci Eng. 2014;2014:1–9. doi:org/10.1155/2014/249174.
  • Rodríguez-Castro GA, Jiménez-Tinoco FL, Méndez-Méndez JF, et al. Damage mechanisms in AISI 304 borided steel: scratch and Daimler-Benz adhesion tests. Mater Res. 2015;18:1346–1353. doi:10.1590/1516-1439.025515
  • Allaoui O, Bouaouadja N, Saindernan G. Characterization of boronized layers on a XC38 steel. Surf Coat Technol. 2006;201:3475–3482. doi:10.1016/j.surfcoat.2006.07.238
  • A. A240, Standard Specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications. 2018.
  • Koga G, Zepon G, Santos L, et al. Wear resistance of boron-modified supermartensitic stainless steel coatings produced by high-velocity oxygen fuel process. J Therm Spray Technol. 2019;28(1):2003–2014. doi:10.1007/s11666-019-00961-2
  • Vera Cárdenas EE, Lewis R, Martínez Pérez AI, et al. Characterization and wear performance of boride phases over tool steel substrates. AdvMech Eng. 2016;8:1–10. doi:10.1177/1687814016630257
  • Rodríguez-Castro G, Campos-Silva I, Martínez-Trinidad J, et al. Effect of boriding on the mechanical properties of AISI 1045 steel. Adv Mater Res. 2009;65:63–68. doi:10.4028/www.scientific.net/AMR.65.63
  • Foerster C, Serbena F, Da Silva S, et al. Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation. Nucl Instrum Methods Phys Res Sect B. 2007;257:732–736. doi:10.1016/j.nimb.2007.01.266
  • Ramakrishnan H, Balasundaram R, Lenin K, et al. Experimental investigation of borided kinetics on martensitic stainless steel. Mater Today: Proc. 2022;68(5):1508–1514. doi:10.1016/j.matpr.2022.07.140
  • Beliardouh N, Tlili S, Oulabbas A, et al. Investigation on dry sliding wear performance and corrosion resistance of 13Cr5Ni2Mo supermartensitic stainless steel. Tribol Ind. 2021;43(1):107–116. doi:10.24874/ti.970.09.20.11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.