143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of In on Fe phase morphology and properties of Cu-Fe alloy

, , , , , , & show all
Pages 3278-3287 | Received 29 Mar 2023, Accepted 07 Aug 2023, Published online: 20 Aug 2023

References

  • Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall. 1958;6(11):704–711. doi:10.1016/0001-6160(58)90061-0
  • He J, Zhao JZ, Wang XF, et al. Microstructure development in finely atomized droplets of copper-iron alloys. Metall Mater Trans A. 2005;36A:2450–2454. doi:10.1007/s11661-005-0118-z
  • Shi GD, Jiang H, Wang ZD, et al. Microstructure and properties of Cu-Fe-Co alloy obtained by directional solidification. Electr Eng Inf Sci. 2016: 957–965.
  • Guo JQ, Yang H, Liu P, et al. Effect of Zr on thermal stability of Cu-Fe in-situ composite. Adv Mater Res. 2011;150-151:1462–1465. doi:10.4028/www.scientific.net/AMR.150-151.1462
  • Gao HY, Wang J, Shu D, et al. Effect of Ag on the microstructure and properties of Cu–Fe in situ composites. Scr Mater. 2005;53(10):1105–1109. doi:10.1016/j.scriptamat.2005.07.028
  • Yuan DW, Zeng H, Xiao XP, et al. Effect of Mg addition on Fe phase morphology, distribution and aging kinetics of Cu-6.5Fe alloy. Mater Sci Eng A. 2021;812:141064, doi:10.1016/j.msea.2021.141064
  • Liu SC, Xu SS, Jie JC, et al. Microstructure evolution and magnetic properties of metastable immiscible Cu-Fe alloy with micro-alloying B element. J Alloys Compd. 2021;888:161627, doi:10.1016/j.jallcom.2021.161627
  • Zhang HT, Fu HD, He XQ, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Metall. 2020;200:803–810. doi:10.2139/ssrn.3646448
  • Wang YF, Gao HY, Han YF, et al. First-principles study on the solubility of iron in dilute Cu-Fe-X alloys. J Alloys Compd. 2017;691:992–996. doi:10.1016/j.jallcom.2016.08.247
  • Wang YF, Gao HY, Han YF, et al. Role of the third element in accelerating Fe diffusivities in Cu from first principles. J Alloys Compd. 2015;639:642–647. doi:10.1016/j.jallcom.2015.02.135
  • Jiapeng H, Pengfei S, Qiang W, et al. Breaking the trade-off relation between strength and electrical conductivity: heterogeneous grain design [J]. Acta Metall Sinica. 2022;58(11):1467–1477.
  • Sun SQ, Mao L, Guo ZM, et al. Structures and properties of deformation-processed Cu-16Fe-2Cr in-situ composites. Trans Nonferrous Met Soc China. 2003;13(2):307–310. doi:10.1016/S1359-6462(02)00599-7
  • Chen Y, Li N, Hoagland RG, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater. 2020;199:593–601. doi:10.1016/j.actamat.2020.08.019
  • Zhilyaev AP, Shakhova I, Morozova A, et al. Grain refinement kinetics and strengthening mechanisms in Cu-0.3Cr-0.5Zr alloy subjected to intense plastic deformation. Mater Sci Eng A. 2016;654:131–142. doi:10.1016/j.msea.2015.12.038
  • Subramanian PR, Laughlin DE. The Cu-In (copper-indium) system. Bull Alloy Phase Diagrams. 1989;10(5):554–568. doi:10.1007/BF02882415
  • Timberg L, Toguri JM, Azakami T. A thermodynamic study of copper-iron and copper-cobalt liquid alloys by mass spectrometry. Metall Trans B. 1981;12:275–279. doi:10.1007/BF02654460
  • Ohno M, Yoh K. Thermodynamic calculation of phase equilibria in As-Fe-In ternary system based on CALPHAD approach. Mater Trans. 2009;50(5):1202–1207. doi:10.2320/matertrans.MER2008437
  • Liu S C, Jie J C, Guo ZK, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions. J Alloys Compd. 2018;742:99–106. doi:10.1016/j.jallcom.2018.01.306
  • Sun BD, Gao HY, Wang J, et al. Strength of deformation processed Cu-Fe-Ag in situ composites. Mater Lett. 2007;61(4-5):1002–1006. doi:10.1016/j.matlet.2006.06.030
  • Spitzig WA. Strengthening in heavily deformation processed Cu-20% Nb. Acta Metall Mater. 1991;39(6):1085–1090. doi:10.1016/0956-7151(91)90195-7
  • Spitzig WA, Bincr SB. Comparison of strengthening in wire-drawn or rolled Cu-20%Nb with a dislocation accumulation model. J Mater Sci. 1993;28(17):4623–4629. doi:10.1007/BF00414250
  • Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11:203–209. doi:10.1016/0001-6160(63)90213-X
  • Fleischer RL. Solution hardening by tetragonal distortions application to irradiation hardening in F.C.C. crystals. Acta Metall. 1962;10:835–842. doi:10.1016/0001-6160(62)90098-6
  • Freudenberger J, Lyubimova J, Gaganov A, et al. Non-destructive pulsed field CuAg-solenoids. Mater Sci Eng A. 2010;527(7-8):2004–2013. doi:10.1016/j.msea.2009.11.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.