165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the tribological properties of pure Ti by pinless friction surface stirring

, , , &
Pages 3308-3320 | Received 31 May 2023, Accepted 12 Aug 2023, Published online: 26 Aug 2023

References

  • Mohanta M, Thirugnanam A. Commercial pure titanium – a potential candidate for cardiovascular stent. Mater Werk. 2022;53(12):1518–1543. doi:10.1002/mawe.202100306
  • Hashemi PM, Borhani E, Nourbakhsh MS. Commercially pure titanium modification to enhance corrosion behavior and osteoblast response by ECAP for biomedical applications. J Appl Biomater Funct Mater. 2022;20:228080002210952.
  • Majchrowicz K, Sotniczuk A, Malicka J, et al. Thermal stability and mechanical behavior of ultrafine-grained titanium with different impurity content. Mater. 2023;16(4):1339. doi:10.3390/ma16041339
  • Chao Y, Liu Y, Xu Z, et al. Improving superficial microstructure and properties of the laser-processed ultrathin kerf in Ti-6Al-4 V alloy by water-jet guiding. J Mater Sci Technol. 2023;156:32–53. doi:10.1016/j.jmst.2022.11.058
  • Mahmoodian R, Annuar NS, Faraji G, et al. Severe plastic deformation of commercial pure titanium (CP-Ti) for biomedical applications: a brief review. JOM. 2017;71(1):256–263. doi:10.1007/s11837-017-2672-4
  • Seok T-H, Park S-H, Kim J-H, et al. New displacement-based finite element analysis method for predicting the surface residual stress generated by ultrasonic nanocrystal surface modification. Eur J Mech A/Solids. 2023;100:105008. doi:10.1016/j.euromechsol.2023.105008
  • Zhang Q, Ye Y, Yang Y, et al. A review of low-plasticity burnishing and its applications. Adv Eng Mater. 2022;24(11):2200365. doi:10.1002/adem.202200365
  • Prabhakar DAP, Shettigar AK, Herbert MA, et al. A comprehensive review of friction stir techniques in structural materials and alloys: challenges and trends. J Mater Res Technol. 2022;20:3025–3060. doi:10.1016/j.jmrt.2022.08.034
  • Zykova AP, Yu TS, Chumaevskiy AV, et al. A review of friction stir processing of structural metallic materials: process. Propert Meth. Met. 2020;10(6):772.
  • Chaudhary A, Kumar Dev A, Goel A, et al. The mechanical properties of different alloys in friction stir processing: a review. Mater Today: Proc. 2018;5(2):5553–5562. doi:10.1016/j.matpr.2017.12.146
  • Singh AK, Kaushik L, Singh J, et al. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing. Int J Plast. 2022;150:103184. doi:10.1016/j.ijplas.2021.103184
  • Jiang L, Huang W, Liu C, et al. Microstructure, texture evolution and mechanical properties of pure Ti by friction stir processing with slow rotation speed. Mater Charac. 2019;148:1–8. doi:10.1016/j.matchar.2018.12.006
  • Mironov S, Sato YS, Kokawa H. Development of grain structure during friction stir welding of pure titanium. Acta Mate. 2009;57(15):4519–4528. doi:10.1016/j.actamat.2009.06.020
  • Velukkudi Santhanam SK, Jeyarajan JR, Manivannan SK, et al. Analysis on mechanical properties and corrosion behavior of friction stir processing of commercially pure-titanium. Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Vol. 3: advanced materials: design, processing, characterization and applications; advances in aerospace technology. October 30–November 3, 2022. Columbus, Ohio, USA. ASME. V003T03A026. http://doi.org/10.1115/IMECE2022-93876.
  • Fattah-Alhosseini A, Attarzadeh F R, Vakili-Azghandi M. Effect of multi-pass friction stir processing on the electrochemical and corrosion behavior of pure titanium in strongly acidic solutions. Metall Mater Trans A. 2016;48(1):403–411. doi:10.1007/s11661-016-3854-3
  • Fattah-alhosseini A, Vakili-Azghandi M, Sheikhi M, et al. Passive and electrochemical response of friction stir processed pure titanium. J Alloys Comp. 2017;704:499–508. doi:10.1016/j.jallcom.2017.02.095
  • Honggang M, Kuaishe W. Research on surface properties of TA2 commercially pure Titanium surface by friction stir processing, Ti-2011, Proceedings of the 12th World Conference on Titanium; 2011; China National Convention Center (CNCC), Beijing, Vol. 2, 1690-1693, Science Press; 2012.
  • Vakili-Azghandi M, Roknian M, Szpunar JA, et al. Surface modification of pure titanium via friction stir processing: microstructure evolution and dry sliding wear performance. J Alloys Comp. 2020;816:152557. doi:10.1016/j.jallcom.2019.152557
  • Fattah-alhosseini A, Vakili-Azghandi M, Haghshenas M. On the passive and electrochemical behavior of severely deformed pure Ti through friction stir processing. Int J Adv Manuf Technol. 2016;90(1–4):991–1002.
  • Ding Z, Fan Q, Wang L. A review on friction stir processing of titanium alloy: characterization, method, microstructure, properties. Metall Mater Trans B. 2019;50(5):2134–2162. doi:10.1007/s11663-019-01634-9
  • Du S, Liu H, Jiang M, et al. The performance of a Co-based alloy tool in the friction stir welding of TA5 alloy. Wear. 2022;488–489:204180. doi:10.1016/j.wear.2021.204180
  • Farias A, Batalha GF, Prados EF, et al. Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4 V. Wear. 2013;302(1–2):1327–1333. doi:10.1016/j.wear.2012.10.025
  • Amirov A, Eliseev A, Kolubaev E, et al. Wear of ZhS6U nickel superalloy tool in friction stir processing on commercially pure titanium. Met. 2020;10(6):799.
  • Zainelabdeen IH, Al-Badour FA, Adesina AY, et al. Friction stir surface processing of 6061 aluminum alloy for superior corrosion resistance and enhanced microhardness. Int J Lightweight Mater Manuf. 2023;6(1):129–139.
  • Arora HS, Perumal G, Rani M, et al. Facile and green engineering approach for enhanced corrosion resistance of Ni–Cr–Al2O3 thermal spray coatings. ACS Omega. 2020;5(38):24558–24566. doi:10.1021/acsomega.0c03053
  • Singh S, Kaur M, Saravanan I. Enhanced microstructure and mechanical properties of boiler steel via friction stir processing. Mater Today: Proc. 2020;22:482–486. doi:10.1016/j.matpr.2019.07.724
  • Schneider M, George EP, Manescau TJ, et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. Int J Plast. 2020;124:155–169. doi:10.1016/j.ijplas.2019.08.009
  • Shamsipur A, Kashani-Bozorg SF, Zarei-Hanzaki A. The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf Coat Technol. 2011;206(6):1372–1381. doi:10.1016/j.surfcoat.2011.08.065
  • Shamsipur A, Kashani-Bozorg SF, Zarei-Hanzaki A. Production of in-situ hard Ti/TiN composite surface layers on CP-Ti using reactive friction stir processing under nitrogen environment. Surf Coat Technol. 2013;218:62–70. doi:10.1016/j.surfcoat.2012.12.028
  • Sheng LY, Yang F, Xi TF, et al. Investigation on microstructure and wear behavior of the NiAl–TiC–Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. J Alloys Comp. 2013;554:182–188. doi:10.1016/j.jallcom.2012.11.144
  • Gotman I, Gutmanas EY, Hunter G. Wear-resistant ceramic films and coatings. Compr BioMater. 2011: 127–155. doi:10.1016/B978-0-08-055294-1.00019-2
  • Pouriamanesh R, Nasiri B, Dehghani K. The effect of TiO2 particles on microstructural evolutions of HSLA steels subjected to friction stir welding. Mater Res Exp. 2019;6(8):086593. doi:10.1088/2053-1591/ab209e
  • Huang K-T, Lui T-S, Chen L-H. Effect of dynamically recrystallized grain size on the tensile properties and vibration fracture resistance of friction stirred 5052 alloy. Mater Trans. 2006;47(9):2405–2412. doi:10.2320/matertrans.47.2405
  • Sato YS, Park SHC, Kokawa H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Met Mater Trans A. 2001;32(12):3033–3042. doi:10.1007/s11661-001-0178-7
  • Huang K-T, Lui T-S, Chen L-H. Pre-treated effect of friction stir processing of Al alloy 5052 on vibration fracture behavior under resonant vibration. Mater Trans. 2005;46(12):3051–3058. doi:10.2320/matertrans.46.3051
  • Bignon M, Bertrand E, Rivera-Díaz-del-Castillo PEJ, et al. Martensite formation in titanium alloys: crystallographic and compositional effects. J Alloys Comp. 2021;872:159636. doi:10.1016/j.jallcom.2021.159636
  • Sun X, Lin H, Chen X, et al. Comparative study on electrocrystallization of calcium phosphate ceramics on commercially pure titanium and selective laser melting titanium. Mater Lett. 2017;192:92–95. doi:10.1016/j.matlet.2016.12.051
  • Yazdipour A, Shafiei MA, Dehghani K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng. A. 2009;527(1–2):192–197. doi:10.1016/j.msea.2009.08.040
  • Shirazi H, Sh K, Safarkhanian MA. Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy. Measurement ( Mahwah N J). 2015;76:62–69.
  • Di Bella G, Favaloro F, Borsellino C. Effect of process parameters on friction stir welded joints between dissimilar aluminum alloys: a review. Metals (Basel). 2023;13(7):1176. doi:10.3390/met13071176
  • Mao YS, Wang L, Chen KM, et al. Tribo-layer and its role in dry sliding wear of Ti–6Al–4 V alloy. Wear. 2013;297(1–2):1032–1039. doi:10.1016/j.wear.2012.11.063
  • Vitu T, Escudeiro A, Polcar T, et al. Sliding properties of Zr-DLC coatings: the effect of tribolayer formation. Surf Coat Technol. 2014;258:734–745. doi:10.1016/j.surfcoat.2014.08.003
  • Moazami MR, Razaghian AM, et al. Tribological behavior of as-cast and wrought Al–Mg2Si hybrid composites reinforced by Ti-based intermetallics. J Mater Res Technol. 2022;20:1315–1327. doi:10.1016/j.jmrt.2022.07.142
  • Ansarian I, Shaeri MH, Ebrahimi M, et al. Tribological characterization of commercial pure titanium processed by multi-directional forging. Acta Metall Sinica (Eng Lett.). 2019;32(7):857–868. doi:10.1007/s40195-019-00877-4
  • Rajabi M, Miresmaeili R, Aliofkhazraei M. Hardness and wear behavior of surface mechanical attrition treated titanium. Mater Res Exp. 2019;6(6):065003. doi:10.1088/2053-1591/ab0673
  • Zambrano OA, Muñoz EC, Rodríguez SA, et al. Running-in period for the abrasive wear of austenitic steels. Wear. 2020;452–453:203298. doi:10.1016/j.wear.2020.203298
  • Sarmadi H, Kokabi AH, Seyed Reihani SM. Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear. 2013;304(1–2):1–12. doi:10.1016/j.wear.2013.04.023
  • Liu Y, Sun S, Wang J, et al. Tribological behaviors of LDED Inconel 718 samples polished with a hybrid laser polishing technique. J Mater Res Technol. 2023;25:633–646. doi:10.1016/j.jmrt.2023.05.230
  • Chen X, Han Z, Lu K. Friction and wear reduction in copper with a gradient nano-grained surface layer. ACS Appl Mater Interfaces. 2018;10(16):13829–13838. doi:10.1021/acsami.8b01205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.