227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Polymer nanocomposite films of Sr-doped BiVO4 for photodegradation of malachite green

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3321-3331 | Received 28 Apr 2023, Accepted 24 Aug 2023, Published online: 04 Sep 2023

References

  • Ehrampoush MH, Moussavi GHR, Ghaneian MT, et al. Removal of methylene blue (MB) Dye from textile synthetic wastewater using TiO2/UV-C photocatalytic process. Aust J Basic & Appl Sci. 2010;4(9):4279–4285.
  • Paola AD, López EG, Marcì G, et al. A survey of photocatalytic materials for environmental remediation. J Hazard Mater. 2012;211–212:3–29. doi:10.1016/j.jhazmat.2011.11.050
  • Sankhla MS, Kumari M, Nandan M, et al. Heavy metals contamination in water and their hazardous effect on human health-A review. Int J Curr Microbiol App Sci. 2016;5(10):759–766. doi:10.20546/ijcmas.2016.510.082
  • Suja F, Pramanik BK, Zain SM. Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Sci Technol. 2009;60(6):1533–1544. doi:10.2166/wst.2009.504
  • Adhikari S, Chandra KS, Kim DH, et al. Understanding the morphological effects of WO3 photocatalysts for the disintegration of organic pollutants. Adv Powder Technol. 2018;29(7):1591–1600. doi:10.1016/j.apt.2018.03.024
  • Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol. 2004;66(3):319–329. doi:10.1016/j.aquatox.2003.09.008
  • Stammati A, Nebbia C, De Angelis I, et al. Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol In Vitro. 2005;19(7):853–858. doi:10.1016/j.tiv.2005.06.021
  • Khaki MRD, Shafeeyan MS, Raman AAA, et al. Application of doped photocatalysts for organic pollutant degradation - A review. J Environ Manage. 2017;198(2):78–94. doi:10.1016/j.jenvman.2017.04.099
  • Xu P, Zeng GM, Huang DL, et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ. 2012;424:1–10. doi:10.1016/j.scitotenv.2012.02.023
  • Oturan MA, Aaron JJ. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol. 2014;44(23):2577–2641. doi:10.1080/10643389.2013.829765
  • Hari E, Anantharamaiah PN, Prabu NM. Magnetically retrievable and reusable BiVO4/Li0.5Fe2.5O4 nanocomposites for photocatalytic disintegration of methylene blue. J Iran Chem Soc 2023;20:1891–1902. doi:10.1007/s13738-023-02806-w.
  • Paul AK, Prabu M, Madras G, et al. Effect of metal ion doping on the photocatalytic activity of aluminophosphates. J Chem Sci. 2010;122:771–785. doi:10.1007/s12039-010-0065-0
  • Zhang X, Lin Q, Luo S, et al. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. App Surf Sci. 2018;442:322–331. doi:10.1016/j.apsusc.2018.02.148
  • Chan YJ, Chong MF, Law CL, et al. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J. 2009;115(1-2):1–18. doi:10.1016/j.cej.2009.06.041
  • Tsai CG, Tseng WJ. Preparation of TiN–TiO2 composite nanoparticles for organic dye adsorption and photocatalysis. Ceram Int. 2020;46(10):14529–14535. doi:10.1016/j.ceramint.2020.02.252
  • Nasr M, Eid C, Habchi R, et al. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem. 2018;11(18):3023–3047. doi:10.1002/cssc.201800874
  • Sarvani KNVS, Hiremath L, Prabu NM. Design and study of BiVO4/MnCo2O4 nanocomposites for visible light-driven antibacterial applications. Curr Sci. 2023;124(2):183–189.
  • Remlalfaka W, Murugesan C, Anantharamaiah PN, et al. Fabrication of magnetically recoverable BiVO4/NiFe2O4 composites for the photocatalytic degradation of methylene blue. Ceram Int. 2021;47(8):11526–11535. doi:10.1016/j.ceramint.2020.12.281
  • Jiang H, Dai H, Meng X, et al. Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. J Environ Sci. 2012;24(3):449–457. doi:10.1016/S1001-0742(11)60793-6
  • Vinu R, Madras G. Environmental remediation by photocatalysis. J Indian I Sci. 2010;90(2):189–230.
  • Mohan R, Jineesh AG. Prabu NM. Fabrication of reusable polymer nanocomposite films made of thermoplastic polyurethane and modified BiVO4 for photodegradation of malachite green. Environ Eng Res. 2022;27(4):210161. doi:10.4491/eer.2021.161
  • Hashim A. Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron. 2021;53:478. doi:10.1007/s11082-021-03100-w
  • Fadil OB, Hashim A. Fabrication and tailored optical characteristics of CeO2/SiO2 nanostructures doped PMMA for electronics and optics fields. Silicon. 2022;14:9845–9852. doi:10.1007/s12633-022-01728-1
  • Hashim A, Abbas MH, Al-Aaraji NAH, et al. Facile fabrication and developing the structural, optical and electrical properties of SiC/Y2O3 nanostructures doped PMMA for optics and potential nanodevices. Silicon. 2023;15:1283–1290. doi:10.1007/s12633-022-02104-9
  • Meteab MH, Hashim A, Rabee BH. Controlling the structural and dielectric characteristics of PS-PC/Co2O3-SiC hybrid nanocomposites for nanoelectronics applications. Silicon. 2023;15:251–261. doi:10.1007/s12633-022-02020-y
  • Hashim A, Abbas MH, Al-Aaraji NAH, et al. Controlling the morphological, optical and dielectric characteristics of PS/SiC/CeO2 nanostructures for nanoelectronics and optics fields. J Inorg Organomet Polym. 2023;33:1–9. doi:10.1007/s10904-022-02485-9
  • Zykova A, Pantyukhov P, Popov A. Mechanical properties of ethylene-octene copolymer (EOC) - lignocellulosic fillers biocomposites in dependence to filler content. AIP Conf Proc. 2016;1736(1):020123. doi:10.1063/1.4949698
  • Tesarikova A, Merinska D, Kalous J, et al. Ethylene-Octene copolymers/organoclay nanocomposites: preparation and properties. J Nanomater. 2016;2016:6014064. doi:10.1155/2016/6014064
  • International Homepage of OSRAM [Internet]. Munich: OSRAM; [cited 2023 Jan 05]. Available from: https://docs.rs-online.com/6b44/0900766b81374bff.pdf.
  • Zou Y, Lu M, Jiang Z, et al. Hydrothermal synthesis of Zn-doped BiVO4 with mixed crystal phase for enhanced photocatalytic activity. Opt Mater. 2021;119:111398. doi:10.1016/j.optmat.2021.111398
  • Xue Y, Wang X. The effects of Ag doping on crystalline structure and photocatalytic properties of BiVO4. Int J Hydrog Energy. 2015;40(17):5878–5888. doi:10.1016/j.ijhydene.2015.03.028
  • Luo Y, Tan G, Dong G, et al. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light. Appl Surf Sci. 2016;364:156–165. doi:10.1016/j.apsusc.2015.12.100
  • Merupo VI, Velumani S, Ordon K, et al. Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4). CrystEngComm. 2015;17(17):3366–3375. doi:10.1039/C5CE00173K
  • Gu S, Li W, Wang F, et al. Substitution of Ce (III,IV) ions for Bi in BiVO4 and its enhanced impact on visible light-driven photocatalytic activities. Catal Sci Technol. 2016;6(6):1870–1881. doi:10.1039/C5CY01412C
  • Nguyen TD, Bui QTP, Le TB, et al. Co2+ substituted for Bi3+ in BiVO4 and its enhanced photocatalytic activity under visible LED light irradiation. RSC Adv. 2019;9(41):23526–23534. doi:10.1039/C9RA04188E
  • Regmi C, Kshetri YK, Kim TH, et al. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Mol Catal. 2017;432:220–231. doi:10.1016/j.mcat.2017.02.004
  • Jo WJ, Kang HJ, Kong KJ, et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc Natl Acad Sci USA. 2015;112(45):13774–13778. doi:10.1073/pnas.1509674112
  • Walsh A, Yan Y, Huda MN, et al. Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem Mater. 2009;21(3):547–551. doi:10.1021/cm802894z
  • De AK, Majumdar S, Pal S, et al. Zn doping induced band gap widening of Ag2O nanoparticles. J Alloys Compd. 2020;832:154127. doi:10.1016/j.jallcom.2020.154127
  • Narayanan N, Deepak NK. Ga dopant induced band gap broadening and conductivity enhancement in spray pyrolysed Zn0.85Ca0.15O thin films. Mater Res. 2018;21(6):e20180034. doi:10.1590/1980-5373-mr-2018-0034
  • Rafique S, Han L, Mou S, et al. Temperature and doping concentration dependence of the energy band gap in β-Ga2O3 thin films grown on sapphire. Opt Mater Express. 2017;7(10):3561–3570. doi:10.1364/OME.7.003561
  • Tian N, Huang H, He Y, et al. Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 2015;44(9):4297–4307. doi:10.1039/C4DT03905J
  • Liu Y, Li H, Zhang X, et al. PEG-assisted hydrothermal synthesis of novel flower-like hierarchical BiVO4 with enhanced visible light photocatalytic activity. IOP Conf. Ser: Mater Sci Eng. 2018;452:042105. doi:10.1088/1757-899X/452/4/042105
  • Zhang Z, Wang M, Cui W, et al. Synthesis and characterization of a core–shell BiVO4@g-C3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Adv. 2017;7(14):8167–8177. doi:10.1039/C6RA27766G
  • Shan L, Liu Y. Er3+, Yb3+ doping induced core–shell structured BiVO4 and near-infrared photocatalytic properties. J Mol Catal A Chem. 2016;416:1–9. doi:10.1016/j.molcata.2016.02.013
  • Sunny A, Prabu NM. Enhancement of photocatalytic activity of BiVO4 by barium doping. Indian J Chem A. 2020;59A:775–782.
  • Hou J, Yang C, Wang Z, et al. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl Catal B: Environ. 2013;142-143:504–511. doi:10.1016/j.apcatb.2013.05.050
  • Cheng H, Hou J, Zhu H, et al. Plasmonic Z-scheme α/β-Bi2O3–Ag–AgCl photocatalyst with enhanced visible-light photocatalytic performance. RSC Adv 2014;4(78):41622–41630. doi:10.1039/C4RA07938H
  • Jiang H, Endo H, Natori H, et al. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J Eur Ceram Soc. 2008;28(15):2955–2962. doi:10.1016/j.jeurceramsoc.2008.05.002
  • Karunakaran C, Kalaivani S, Vinayagamoorthy P. Electrical, optical, and visible light-photocatalytic properties of zirconium-doped BiVO4 nanoparticles. Mater Express. 2014;4(2):125–134. doi:10.1166/mex.2014.1156
  • Yao W, Iwai H, Ye J. Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. Dalton Trans. 2008;11:1426–1430. doi:10.1039/b713338c
  • Regmi C, Kshetri YK, Pandey RP, et al. Understanding the multifunctionality in Cu-doped BiVO4 semiconductor photocatalyst. J Environ Sci. 2019;75:84–97. doi:10.1016/j.jes.2018.03.005
  • Chen R, Wang W, Jiang D, et al. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance. J Phys Chem Solids. 2018;117:28–35. doi:10.1016/j.jpcs.2018.02.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.