64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel dual compressive sensing method for solving the monostatic scattering problems of three-dimensional target

, , , , &
Pages 577-590 | Received 30 Aug 2023, Accepted 27 Nov 2023, Published online: 07 Dec 2023

References

  • Canh, T. N., and B. Jeon. 2021. Restricted structural random matrix for compressive sensing. Signal Processing: Image Communication 90:116017–116031. doi:10.1016/j.image.2020.116017.
  • Cao, X. Y., M. S. Chen, X. L. Wu, M. Kong, J. Hu, and Y. Zhu. 2018. Dual compressed sensing method for solving electromagnetic scattering problems by method of moments. IEEE Antennas & Wireless Propagation Letters 17 (2):267–270. doi:10.1109/LAWP.2017.2785658.
  • Chai, S. R., and L. X. Guo. 2015. A new method based on compressive sensing for monostatic scattering analysis. Microwave and Optical Technology Letters 57 (10):2457–61. doi:10.1002/mop.29355.
  • Chai, S. R., and L. X. Guo. 2016. Fast analysis of bistatic scattering problems with compressive sensing technique. Journal of Electromagnetic Waves and Applications 30 (13):1755–62. doi:10.1080/09205071.2016.1213665.
  • Chen, M. S., F. A. Liu, H. M. Du, and X. Liang Wu. 2011. Compressive sensing for fast analysis of wide-angle monostatic scattering problems. IEEE Antennas & Wireless Propagation Letters 10:1243–1246. doi:10.1109/LAWP.2011.2174190.
  • Coifman, R., V. Rokhlin, and S. Wandzura. 1993. The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (3):7–12. doi:10.1109/74.250128.
  • Guo, J. L., J. Y. Li, and Q. Z. Liu. 2006. Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation. IEEE Trans Antennas Propag 54 (7):1910–1916. doi:10.1109/TAP.2006.877157.
  • Kong, M., M. S. Chen, X. Y. Cao, J. B. Zhu, X. J. Kuang, Q. Qi, and X. L. Wu. 2021. Fast electromagnetic scattering analysis of inhomogeneous dielectric objects over a wide incident angle. IEEE Antennas & Wireless Propagation Letters 20 (8):1527–1531. doi:10.1109/LAWP.2021.3089629.
  • Kong, M., M. S. Chen, B. Wu, and X. L. Wu. 2017. Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing. IEEE Antennas & Wireless Propagation Letters 16:198–201. doi:10.1109/LAWP.2016.2569605.
  • Koren, Y., R. Bell, and C. Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer 42 (8):30–37. doi:10.1109/MC.2009.263.
  • Liu, J. F., X. L. Huang, P. Wang, and X. Liu. 2021. Compressive spectrum sensing with temporal-correlated prior knowledge mining. Wireless Communications and Mobile Computing 2021:1–9. doi:10.1155/2021/5539697.
  • Prakash, V. V. S., and R. Mittra. 2003. Characteristic basis function method: A new technique forefficient solution of method of moments matrix equations. Microwave and Optical TechnologyLetters 36 (2):95–100. doi:10.1002/mop.10685.
  • Song, J., C. L. Cai, and C. C. Weng. 1997. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45 (10):1488–1493. doi:10.1109/8.633855.
  • Sun, Y. F., Y. Zhang, S. J. Xu, and X. Q. Chen. 2006. EM scattering analysis of 2-D multiple conducting cylinders using characteristic basis function method. Radio Science 21 (2):229–232. doi:10.13443/j.cjors.2006.02.015.
  • Tropp, J. A., and A. C. Gilbert. 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory / Professional Technical Group on Information Theory 53 (12):4655–66. doi:10.1109/TIT.2007.909108.
  • Wang, R., J. B. Guo, J. P. Hui, Z. Wang, H. J. Liu, Y. N. Xu, and Y. F. Liu. 2019. Statistical compressive sensing based on convolutional gaussian mixture model. Acta Physical Sin 68 (18):180701–180712. doi:10.7498/aps.68.20190414.
  • Wang, Z. G., W. Y. Nie, and H. Lin. 2020. Characteristic basis functions enhanced compressive sensing for solving the bistatic scattering problems of three-dimensional targets. Microwave and Optical Technology Letters 62 (10):3132–3138. doi:10.1002/mop.32432.
  • Xu, Y. L., H. Yang, J. Q. Lu, W. Yu, W. Yin, and D. Peng. 2017. Improved synthetic basis functions method for nonperiodic scaling structures with arbitrary spatial attitudes. IEEE Transactions on Antennas & Propagation 65 (9):4728–4741. doi:10.1109/TAP.2017.2723661.
  • Yang, J. B., X. J. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, and L. Carin. 2015. Compressive sensing by learning a gaussian mixture model from measurements. IEEE Transactions on Image Processing 24 (1):106–119. doi:10.1109/TIP.2014.2365720.
  • Zhong, Y. H., J. Zhang, X. Y. Cheng, G. Huang, Z. Zhou, and Z. Huang. 2019. Reconstruction for block-based compressive sensing of image with reweighted double sparse constraint. EURASIP Journal on Image and Video Processing 2019 (1):1–14. doi:10.1186/s13640-019-0464-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.