132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An investigation into static angle of repose using pharmaceutical powders

, , &

References

  • ASTM Standard, D7481-09. 2009. Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders Using a Graduated Cylinder, West Conshohocken, PA, USA: ASTM International (www.astm.org).
  • Baserinia, R., K. Brockbank, and R. Dattani. 2022. Correlating polyamide powder flowability to mechanical properties of parts fabricated by additive manufacturing. Powder Technology 398:117147. doi: 10.1016/j.powtec.2022.117147.
  • Barjat, H., S. Checkley, T. Chitu, N. Dawson, A. Farshchi, A. Ferreira, J. Gamble, M. Leane, A. Mitchell, C. Morris, et al. 2021. Demonstration of the feasibility of predicting the flow of pharmaceutically relevant powders from particle and bulk physical properties. Journal of Pharmaceutical Innovation 16 (1):181–96. doi: 10.1007/s12247-020-09433-5.
  • Beakawi Al-Hashemi, H. M., and O. S. Baghabra Al-Amoudi. 2018. A review on the angle of repose of granular materials. Powder Technology 330:397–417. doi: 10.1016/j.powtec.2018.02.003.
  • Boschini, F., V. Delaval, K. Traina, N. Vandewalle, and G. Lumay. 2015. Linking flowability and granulometry of lactose powders. International Journal of Pharmaceutics 494 (1):312–20. doi: 10.1016/j.ijpharm.2015.08.030.
  • Chávez Montes, B. E., J. M. Martínez-Alejo, H. Lozano-Perez, J. C. Gumy, D. Zemlyanov, and M. T. Carvajal. 2019. A surface characterization platform approach to study flowability of food powders. Powder Technology 357 (December):269–80. doi: 10.1016/j.powtec.2019.08.072.
  • European Pharmacopoeia 7.0. 2010. Chapter 2.9.36.: Powder flow. p. 308.
  • Francia, V., L. A. A. Yahia, R. Ocone, and A. Ozel. 2021. From quasi-static to intermediate regimes in shear cell devices: Theory and characterisation. KONA Powder and Particle Journal 38 (0):3–25. doi: 10.14356/kona.2021018.
  • Fathollahi, S., E. Faulhammer, B. J. Glasser, and J. G. Khinast. 2020. Impact of powder composition on processing-relevant properties of pharmaceutical materials: An experimental study. Advanced Powder Technology 31 (7):2991–3003. doi: 10.1016/j.apt.2020.05.027.
  • Garg, V., S. S. Mallick, P. Garcia-Trinanes, and R. J. Berry. 2018. An investigation into the flowability of fine powders used in pharmaceutical industries. Powder Technology 336 (August):375–82. doi: 10.1016/j.powtec.2018.06.014.
  • Ghadiri, M., M. Pasha, W. Nan, C. Hare, V. Vivacqua, U. Zafar, S. Nezamabadi, A. Lopez, M. Pasha, and S. Nadimi. 2020. Cohesive powder flow: Trends and challenges in characterisation and analysis. KONA Powder and Particle Journal 37 (0):3–18. doi: 10.14356/kona.2020018.
  • Hastie, D. B. 2015. On the difficulties of sampling bulk powder blends in determining segregation propensity—A case study. Powder Technology 286 (December):164–71. doi: 10.1016/j.powtec.2015.08.013.
  • Janssen, P. H. M., S. Depaifve, A. Neveu, F. Francqui, and B. H. J. Dickhoff. 2021. Impact of powder properties on the rheological behavior of excipients. Pharmaceutics 13 (8):1198. doi: 10.3390/pharmaceutics13081198.
  • Jager, P. D., T. Bramante, and P. E. Luner. 2015. Assessment of pharmaceutical powder flowability using shear cell-based methods and application of Jenike’s methodology. Journal of Pharmaceutical Sciences 104 (11):3804–13. doi: 10.1002/jps.24600.
  • Kalman, H. 2021. Effect of moisture content on flowability: Angle of repose, tilting angle, and Hausner ratio. Powder Technology 393:582–96. doi: 10.1016/j.powtec.2021.08.010.
  • Kissell, R., and J. Poserina. 2017. Regression models. In Optimal sports math, statistics, and fantasy, 39–67. Elsevier, UK. https://linkinghub.elsevier.com/retrieve/pii/B9780128051634000025.
  • Leung, L. Y., C. Mao, L. P. Chen, and C. Y. Yang. 2016. Precision of pharmaceutical powder flow measurement using ring shear tester: High variability is inherent to powders with low cohesion. Powder Technology 301:920–6. doi: 10.1016/j.powtec.2016.07.028.
  • Lumay, G., F. Boschini, K. Traina, S. Bontempi, J.-C. Remy, R. Cloots, and N. Vandewalle. 2012. Measuring the flowing properties of powders and grains. Powder Technology 224 (July):19–27. doi: 10.1016/j.powtec.2012.02.015.
  • Marchetti, L., and C. Hulme-Smith. 2021. Flowability of steel and tool steel powders: A comparison between testing methods. Powder Technology 384 (May):402–13. doi: 10.1016/j.powtec.2021.01.074.
  • Mehos, G. 1971. Storage and flow of bulk solids. https://www.gunt.de/images/download/storage-flow-bulk-solids_english.pdf
  • Rowe, R. C., P. J. Sheskey, and S. C. Owen. 2006. Handbook of pharmaceutical excipients. Pharmaceutical Press and American Pharmacists Association, London, UK.
  • Stavrou, A. G., C. Hare, A. Hassanpour, and C. Y. Wu. 2020. Investigation of powder flowability at low stresses: Influence of particle size and size distribution. Powder Technology 364:98–114. doi: 10.1016/j.powtec.2020.01.068.
  • Shi, H., G. Lumay, and S. Luding. 2020. Stretching the limits of dynamic and quasi-static flow testing on cohesive limestone powders. Powder Technology 367 (May):183–91. doi: 10.1016/j.powtec.2020.03.036.
  • Saker, A., M.-G. Cares-Pacheco, P. Marchal, and V. Falk. 2019. Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio? Powder Technology 354 (September):52–63. doi: 10.1016/j.powtec.2019.05.032.
  • Sun, C. C. 2016. Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester. Powder Technology 289:104–8. doi: 10.1016/j.powtec.2015.11.044.
  • Schulze, D. 2008. Powders and bulk solids. Chemie Ingenieur Technik 82 (4):553–4. doi: 10.1002/cite.201090034.
  • Shah, K. R., S. I. Farag Badawy, M. M. Szemraj, D. B. Gray, and M. A. Hussain. 2007. Assessment of segregation potential of powder blends. Pharmaceutical Development and Technology 12 (5):457–62. doi: 10.1080/10837450701556834.
  • Tan, Y., J. Zhang, X. Li, Y. Xu, and C. Y. Wu. 2021. Comprehensive evaluation of powder flowability for additive manufacturing using principal component analysis. Powder Technology 393:154–64. doi: 10.1016/j.powtec.2021.07.069.
  • Traina, K., R. Cloots, S. Bontempi, G. Lumay, N. Vandewalle, and F. Boschini. 2013. Flow abilities of powders and granular materials evidenced from dynamical tap density measurement. Powder Technology 235 (February):842–52. doi: 10.1016/j.powtec.2012.11.039.
  • Tinke, A. P., R. Govoreanu, I. Weuts, K. Vanhoutte, and D. De Smaele. 2009. A review of underlying fundamentals in a wet dispersion size analysis of powders. Powder Technology 196 (2):102–14. doi: 10.1016/j.powtec.2009.08.005.
  • Wang, C., Z. Wang, A. Friedrich, and C. C. Sun. 2022. Effect of deaeration on processability of poorly flowing powders by roller compaction. International Journal of Pharmaceutics 621 (January):121803. doi: 10.1016/j.ijpharm.2022.121803.
  • Ward, T., and W. Hourigan. 2012. Granular segregation in a tilted-rotating drum. Powder Technology 215–216:227–34. doi: 10.1016/j.powtec.2011.10.003.
  • Yu, W., K. Muteki, L. Zhang, and G. Kim. 2011. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions. Journal of Pharmaceutical Sciences 10 (1):284–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.