173
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Removal of pollutants from aqueous solution with magnetic biochar: a mini review

, , &

References

  • Abbou, B., I. Lebkiri, H. Ouaddari, L. Kadiri, A. Ouass, A. Habsaoui, A. Lebkiri, and E. H. Rifi. 2021. Removal of Cd (II), Cu (II), and Pb (II) by adsorption onto natural clay: A kinetic and thermodynamic study. Turkish Journal of Chemistry 45 (2):362–76. doi:10.3906/kim-2004-82.
  • Achak, M., A. Hafidi, N. Ouazzani, S. Sayadi, and L. Mandi. 2009. Low cost biosorbent “banana peel” for the removal of pHenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. Journal of Hazardous Materials 166 (1):117–25. doi:10.1016/j.jhazmat.2008.11.036.
  • Ahmed, M. J. 2016. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Journal of Environmental Chemical Engineering 4 (1):89–99. doi:10.1016/j.jece.2015.10.027.
  • Ai, T., X. Jiang, Q. Liu, L. Lv, and H. Wu. 2019. Daptomycin adsorption on magnetic ultra-fine wood-based biochars from water: Kinetics, isotherms, and mechanism studies. Bioresource Technology 273:8–15. doi:10.1016/j.biortech.2018.10.039.
  • An, Q., X. Q. Li, H. Y. Nan, Y. Yu, and J. N. Jiang. 2018. The potential adsorption mechanism of the biochars with different modification processes to Cr (VI). Environmental Science and Pollution Research International 25 (31):31346–57. doi:10.1007/s11356-018-3107-7.
  • Ao, W., J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, et al. 2018. Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews 92:958–79. doi:10.1016/j.rser.2018.04.051.
  • Azmi, N. B., M. J. Bashir, S. Sethupathi, L. J. Wei, and N. C. Aun. 2015. Stabilized landfill leachate treatment by sugarcane bagasse derived activated carbon for removal of color, COD and NH3-N–optimization of preparation conditions by RSM. Journal of Environmental Chemical Engineering 3 (2):1287–94. doi:10.1016/j.jece.2014.12.002.
  • Baig, S. A., J. Zhu, N. Muhammad, T. Sheng, and X. Xu. 2014. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass and Bioenergy 71:299–310. doi:10.1016/j.biombioe.2014.09.027.
  • Bakshi, S., C. Banik, S. J. Rathke, and D. A. Laird. 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research 137:153–63. doi:10.1016/j.watres.2018.03.021.
  • Cai, W., J. Wei, Z. Li, Y. Liu, J. Zhou, and B. Han. 2019. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull. Colloids and Surfaces A: Physicochemical and Engineering Aspects 563:102–11. doi:10.1016/j.colsurfa.2018.11.062.
  • Cao, F., P. Yin, X. Liu, C. Liu, and R. Qu. 2014. Mercury adsorption from fuel ethanol onto pHospHonated silica gel prepared by heterogenous method. Renewable Energy. 71:61–8. doi:10.1016/j.renene.2014.05.028.
  • Chan, K. Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. JosepH. 2007. Agronomic values of greenwaste biochar as a soil amendment. Soil Research 45 (8):629–34. doi:10.1071/SR07109.
  • Chayid, M. A., and M. J. Ahmed. 2015. Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies. Journal of Environmental Chemical Engineering 3 (3):1592–601. doi:10.1016/j.jece.2015.05.021.
  • Chen, B., Z. Chen, and S. Lv. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and pHospHate. Bioresource Technology 102 (2):716–23. doi:10.1016/j.biortech.2010.08.067.
  • Chen, T., Y. Xiong, Y. Qin, H. Yang, P. Zhang, and F. Ye. 2017. Facile synthesis of low-cost biomass-based γ-Fe2O3/C for efficient adsorption and catalytic degradation of methylene blue in aqueous solution. RSC Advances 7 (1):336–43. doi:10.1039/C6RA24900K.
  • Chen, Y., B. Wang, J. Xin, P. Sun, and D. Wu. 2018. Adsorption behavior and mechanism of Cr (VI) by modified biochar derived from EnteromorpHa prolifera. Ecotoxicology and Environmental Safety 164:440–7. doi:10.1016/j.ecoenv.2018.08.024.
  • Cheng, B. H., R. J. Zeng, and H. Jiang. 2017. Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology 246:224–33. doi:10.1016/j.biortech.2017.07.060.
  • Cho, D. W., G. Kwon, Y. S. Ok, E. E. Kwon, and H. Song. 2017. Reduction of bromate by cobalt-impregnated biochar fabricated via pyrolysis of lignin using CO2 as a reaction medium. ACS Applied Materials & Interfaces 9 (15):13142–50. doi:10.1021/acsami.7b00619.
  • Cho, D. W., K. Yoon, E. E. Kwon, J. K. Biswas, and H. Song. 2017. Fabrication of magnetic biochar as a treatment medium for As (V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environmental Pollution 229:942–9. doi:10.1016/j.envpol.2017.07.079.
  • Deluca, T. H., M. J. Gundale, M. D. MacKenzie, and D. L. Jones. 2015. Biochar effects on soil nutrient transformations. Biochar for Environmental Management: Science, Technology and Implementation 2:421–54.
  • Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science 30 (2):219–30. doi:10.1016/j.pecs.2003.10.004.
  • Dewage, N. B., A. S. Liyanage, C. U. Pittman, Jr, D. Mohan, and T. Mlsna. 2018. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource Technology 263:258–65. doi:10.1016/j.biortech.2018.05.001.
  • Dinçer, A. R., Y. Güneş, N. Karakaya, and E. Güneş. 2007. Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresource Technology 98 (4):834–9. doi:10.1016/j.biortech.2006.03.009.
  • Ding, Z., X. Hu, Y. Wan, S. Wang, and B. Gao. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry 33:239–45. doi:10.1016/j.jiec.2015.10.007.
  • Frolova, L., and M. Kharytonov. 2019. Synthesis of magnetic biochar for efficient removal of Cr (III) cations from the aqueous medium. Advances in Materials Science and Engineering 2019:1–7. doi:10.1155/2019/2187132.
  • Fuat, G, and Y. Cumali. 2021. Synthesis, characterization, and lead (II) sorption performance of a new magnetic separable composite: MnFe2O4@wild plants-derived biochar. Journal of Environmental Chemical Engineering 9 (1):104567. doi:10.1016/j.jece.2020.104567
  • Gokce, Y., and Z. Aktas. 2014. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Applied Surface Science 313:352–9. doi:10.1016/j.apsusc.2014.05.214.
  • Guo, S., J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, and H. Xia. 2009. Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Applied Surface Science 255 (20):8443–9. doi:10.1016/j.apsusc.2009.05.150.
  • Guo, W., S. Wang, Y. Wang, S. Lu, and Y. Gao. 2018. Sorptive removal of pHenanthrene from aqueous solutions using magnetic and non-magnetic rice husk-derived biochars. R. Soc. open Sci 5:1–11.
  • Gupta, R. K., M. Dubey, P. Kharel, Z. Gu, and Q. H. Fan. 2015. Biochar activated by oxygen plasma for supercapacitors. Journal of Power Sources 274:1300–5. doi:10.1016/j.jpowsour.2014.10.169.
  • Han, Y., X. Cao, X. Ouyang, S. P. Sohi, and J. Chen. 2016. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere 145:336–41. doi:10.1016/j.chemosphere.2015.11.050.
  • Han, Z., B. Sani, W. Mrozik, M. Obst, B. Beckingham, H. K. Karapanagioti, and D. Werner. 2015. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research 70:394–403. doi:10.1016/j.watres.2014.12.016.
  • Hao, Z., C. Wang, Z. Yan, H. Jiang, and H. Xu. 2018. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 211:962–9. doi:10.1016/j.chemosphere.2018.08.038.
  • Hayashi, J., Watkinson, A. P., Teo, K. C., Takemoto, S., Muroyama, K. 1995. Production of activated carbon from Canadian coal by chemical activation. 8th International Conference on Coal Science, Oviedo, Spain 1:1121–4.
  • Hettiarachchi, E., R. Perera, A. D. L. Chandani Perera, and N. Kottegoda. 2016. Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination and Water Treatment 57 (47):22341–52. doi:10.1080/19443994.2015.1129649.
  • Hu, B., Y. Ai, J. Jin, T. Hayat, A. Alsaedi, L. Zhuang, and X. Wang. 2020. Efficient elimination of organic and inorganic pollutants by biochar and biochar‑based materials. Biochar 2 (1):47–64. doi:10.1007/s42773-020-00044-4.
  • Ibrahim, I., T. Tsubota, M. A. Hassan, and Y. Andou. 2021. Surface functionalization of biochar from oil palm empty fruit bunch through hydrothermal process. Processes 9 (1):149. doi:10.3390/pr9010149.
  • Ifthikar, J., J. Wang, Q. Wang, T. Wang, H. Wang, A. Khan, A. Jawad, T. Sun, X. Jiao, and Z. Chen. 2017. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications. Bioresource Technology 238:399–406. doi:10.1016/j.biortech.2017.03.133.
  • Jimenez-Cordero, D., F. Heras, N. Alonso-Morales, M. A. Gilarranz, and J. J. Rodriguez. 2015. Ozone as oxidation agent in cyclic activation of biochar. Fuel Processing Technology 139:42–8. doi:10.1016/j.fuproc.2015.08.016.
  • Jung, C., J. Heo, J. Han, N. Her, S. J. Lee, J. Oh, J. Ryu, and Y. Yoon. 2013. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology 106:63–71. doi:10.1016/j.seppur.2012.12.028.
  • Jung, K. W., B. H. Choi, T. U. Jeong, and K. H. Ahn. 2016. Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media. Bioresource Technology 220:672–6. doi:10.1016/j.biortech.2016.09.035.
  • Jung, K. W., S. Y. Lee, and Y. J. Lee. 2018. Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions. Bioresource Technology 261:1–9. doi:10.1016/j.biortech.2018.04.003.
  • Karatepe, N., İ. Orbak, R. Yavuz, and A. Özyuğuran. 2008. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel 87 (15–16):3207–15. doi:10.1016/j.fuel.2008.06.002.
  • Kasnejad, M. H., A. Esfandiari, T. Kaghazchi, and N. Asasian. 2012. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption. Journal of the Taiwan Institute of Chemical Engineers 43 (5):736–40. doi:10.1016/j.jtice.2012.02.006.
  • Khoramzadeh, E., B. Nasernejad, and R. Halladj. 2013. Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers 44 (2):266–9. doi:10.1016/j.jtice.2012.09.004.
  • Kong, X., Y. Liu, J. Pi, W. Li, Q. Liao, and J. Shang. 2017. Low-cost magnetic herbal biochar: Characterization and application for antibiotic removal. Environmental Science and Pollution Research International 24 (7):6679–87. doi:10.1007/s11356-017-8376-z.
  • Lachos-Perez, D., A. B. Brown, A. Mudhoo, J. Martinez, M. T. Timko, M. A. Rostagno, and T. Forster-Carneiro. 2017. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: A critical review. Biofuel Research Journal 4 (2):611–26. doi:10.18331/BRJ2017.4.2.6.
  • Li, W., J. Peng, L. Zhang, K. Yang, H. Xia, S. Zhang, and S. h Guo. 2009. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW. Waste Management 29 (2):756–60. doi:10.1016/j.wasman.2008.03.004.
  • Li, Y., J. Shao, X. Wang, Y. Deng, H. Yang, and H. Chen. 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels 28 (8):5119–27. doi:10.1021/ef500725c.
  • Liu, J., X. Gao, X. Wu, Z. Zhang, and X. Zhang. 2018. Sorption of cadmium by rice husk char, bamboo char, and coconut shell char in aqueous solutions. IOP Conference Series: Earth and Environmental Science 208 (1):012109). IOP Publishing. doi:10.1088/1755-1315/208/1/012109.
  • Liu, X., H. Pang, X. Liu, Q. Li, N. Zhang, M. Liang, M. Qiu, B. Hu, H. Yang, and X. Wang. 2021. Superior adsorbents for pollutants removal from aqueous solutions. Innovation 2 (1):100076. doi:10.1016/j.xinn.2021.100076.
  • Liu, Z., B. Dugan, C. A. Masiello, and H. M. Gonnermann. 2017. Biochar particle size, shape, and porosity act together to influence soil water properties. PLOS One 12 (6):e0179079. doi:10.1371/journal.pone.0179079.
  • Lupoi, J. S., and E. A. Smith. 2012. Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy. Applied Spectroscopy 66 (8):903–10. doi:10.1366/12-06621.
  • Mahmoodi, N. M., B. Hayati, M. Arami, and C. Lan. 2011. Adsorption of textile dyes on pine cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination 268 (1–3):117–25. doi:10.1016/j.desal.2010.10.007.
  • Mayakrishnan, V., J. K. Mohamed, N. Selvaraj, D. SenthilKumar, and S. Annadurai. 2023. Effect of nano-biochar on mechanical, barrier and mulching properties of 3D printed thermoplastic polyurethane film. Polymer Bulletin 80 (6):6725–47. doi:10.1007/s00289-022-04380-2.
  • Mehrabinia, P., and E. Ghanbari-Adivi. 2022. Examining nitrate surface absorption method from polluted water using activated carbon of agricultural wastes. Modeling Earth Systems and Environment 8 (2):1553–61. doi:10.1007/s40808-021-01221-5.
  • Mehrabinia, P., E. Ghanbari-Adivi, R. Fattahi, H. A. Samimi, and J. Kermanezhad. 2022. Nitrate removal from agricultural effluent using sugarcane bagasse active nanosorbent. Journal of Applied Water Engineering and Research 10 (3):238–49. doi:10.1080/23249676.2021.1982030.
  • Meng, Y., D. Chen, Y. Sun, D. Jiao, D. Zeng, and Z. Liu. 2015. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Applied Surface Science 324:745–50. doi:10.1016/j.apsusc.2014.11.028.
  • Mubarak, N. M., J. N. Sahu, E. C. Abdullah, and N. S. Jayakumar. 2016. Rapid adsorption of toxic Pb (II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Journal of Environmental Sciences (China) 45:143–55. doi:10.1016/j.jes.2015.12.025.
  • Mubarak, N. M., A. Kundu, J. N. Sahu, E. C. Abdullah, and N. S. Jayakumar. 2014. Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass and Bioenergy 61:265–75. doi:10.1016/j.biombioe.2013.12.021.
  • Namazi, A. B., D. G. Allen, and C. Q. Jia. 2016. Benefits of microwave heating method in production of activated carbon. The Canadian Journal of Chemical Engineering 94 (7):1262–8. doi:10.1002/cjce.22521.
  • Nasri, N. S., I. M. H. I. Abbas, H. Martel, A. Abdulrasheed, H. M. Zain, U. S. Hayatu, R. Mohsin, Z. A. Majid, N. M. Rashid, Z. Sharer, et al. 2017. CO2 adsorption isotherms on KOH, H3PO4 and FeCl3·6H2O impregnated palm shell kernel activated carbon. Chemical Engineering Transactions 56:181–6.
  • Nizamuddin, S., N. M. Mubarak, M. Tiripathi, N. S. Jayakumar, J. N. Sahu, and P. Ganesan. 2016. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97. doi:10.1016/j.fuel.2015.08.057.
  • Noraini, M. N., E. C. Abdullah, R. Othman, and N. M. Mubarak. 2016. Single-route synthesis of magnetic biochar from sugarcane bagasse by microwave-assisted pyrolysis. Materials Letters 184:315–9. doi:10.1016/j.matlet.2016.08.064.
  • Pappu, A., V. Patil, S. Jain, A. Mahindrakar, R. Haque, and V. K. Thakur. 2015. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. International Journal of Biological Macromolecules 79:449–58. doi:10.1016/j.ijbiomac.2015.05.013.
  • Pietrzak, R., and T. J. Bandosz. 2007. Activated carbons modified with sewage sludge derived pHase and their application in the process of NO2 removal. Carbon 45 (13):2537–46. doi:10.1016/j.carbon.2007.08.030.
  • Povilaitis, A., and J. Matikienė. 2020. Nitrate removal from tile drainage water: The performance of denitrifying woodchip bioreactors amended with activated carbon and flaxseed cake. Agricultural Water Management 229:105937. doi:10.1016/j.agwat.2019.105937.
  • Reddy, D. H. K., and S. M. Lee. 2014. Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 454:96–103. doi:10.1016/j.colsurfa.2014.03.105.
  • Ruthiraan, M., E. C. Abdullah, N. M. Mubarak, and S. Nizamuddin. 2018. Adsorptive removal of methylene blue using magnetic biochar derived from agricultural waste biomass: Equilibrium, isotherm, kinetic study. International Journal of Nanoscience 17 (05):1850002. doi:10.1142/S0219581X18500023.
  • Sakhiya, A. K., P. Baghel, A. Anand, V. K. Vijay, and P. Kaushal. 2021. A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn+ 2 adsorption. Bioresource Technology Reports 15:100774. doi:10.1016/j.biteb.2021.100774.
  • Saravanan, P., V. T. P. Vinod, B. Sreedhar, and R. B. Sashidhar. 2012. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Materials Science and Engineering: C 32 (3):581–6. doi:10.1016/j.msec.2011.12.015.
  • Son, E. B., K. M. Poo, J. S. Chang, and K. J. Chae. 2018. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. The Science of the Total Environment 615:161–8. doi:10.1016/j.scitotenv.2017.09.171.
  • Tan, X. F., S. B. Liu, Y. G. Liu, Y. L. Gu, G. M. Zeng, X. J. Hu, X. Wang, S. H. Liu, and L. H. Jiang. 2017. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology 227:359–72. doi:10.1016/j.biortech.2016.12.083.
  • Tan, X., Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. doi:10.1016/j.chemosphere.2014.12.058.
  • Teng, H., and H. C. Lin. 1998. Activated carbon production from low ash subbituminous coal with CO2 activation. AIChE Journal 44 (5):1170–7. doi:10.1002/aic.690440514.
  • Theydan, S. K., and M. J. Ahmed. 2012. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis 97:116–22. doi:10.1016/j.jaap.2012.05.008.
  • Thines, K. R., E. C. Abdullah, and N. M. Mubarak. 2017. Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass. Microporous and Mesoporous Materials 253:29–39. doi:10.1016/j.micromeso.2017.06.031.
  • Tomin, O., and M. R. Yazdani. 2022. Production and characterization of porous magnetic biochar: Before and after phosphate adsorption insights. Journal of Porous Materials 29 (3):849–59. doi:10.1007/s10934-022-01217-1.
  • Trakal, L., V. Veselská, I. Šafařík, M. Vítková, S. Číhalová, and M. Komárek. 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology 203:318–24. doi:10.1016/j.biortech.2015.12.056.
  • Tripathi, M., N. Mubarak, J. Sahu, and P. Ganesan. 2016. Overview on synthesis of magnetic bio char from discarded agricultural biomass. Handbook of Composites from Renewable Materials, Structure and Chemistry 1:435.
  • Wang, S., B. Gao, Y. Li, A. Mosa, A. R. Zimmerman, L. Q. Ma, W. G. Harris, and K. W. Migliaccio. 2015. Manganese oxide modified bio chars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology 181:13–7. doi:10.1016/j.biortech.2015.01.044.
  • Wang, W., X. Wang, X. Wang, L. Yang, Z. Wu, S. Xia, and J. Zhao. 2013. Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences 25 (9):1726–35. doi:10.1016/s1001-0742(12)60247-2.
  • Wang, B., Y. S. Jiang, F. Y. Li, and D. Y. Yang. 2017. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresource Technology 233:159–65. doi:10.1016/j.biortech.2017.02.103.
  • Wang, S. Y., Y. K. Tang, K. Li, Y. Y. Mo, H. F. Li, and Z. Q. Gu. 2014. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresource Technology 174:67–73. doi:10.1016/j.biortech.2014.10.007.
  • Wang, S., B. Gao, A. R. Zimmerman, Y. Li, L. Ma, W. G. Harris, and K. W. Migliaccio. 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology 175:391–5. doi:10.1016/j.biortech.2014.10.104.
  • Wang, S., W. Guo, F. Gao, Y. Wang, and Y. Gao. 2018. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Advances 8 (24):13205–17. doi:10.1039/c7ra13540h.
  • Wu, Q., S. Dong, L. Wang, and X. Li. 2021. Single and competitive adsorption behaviors of Cu2+, Pb2+ and Zn2+ on the biochar and magnetic biochar of pomelo peel in aqueous solution. Water 13 (6):868. doi:10.3390/w13060868.
  • Xin, O., H. Yitong, C. Xi, and C. Jiawei. 2017. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution. Water Science and Technology 75 (5–6):1177–84. doi:10.2166/wst.2016.610.
  • Yang, J., Y. Zhao, S. Ma, B. Zhu, J. Zhang, and C. Zheng. 2016. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environmental Science & Technology 50 (21):12040–7. doi:10.1021/acs.est.6b03743.
  • Yang, K., and J. T. Fox. 2018. Adsorption of humic acid by acid-modified granular activated carbon and powder activated carbon. Journal of Environmental Engineering 144 (10):04018104. doi:10.1061/(ASCE)EE.1943-7870.0001390.
  • Yap, M. W., N. M. Mubarak, J. N. Sahu, and E. C. Abdullah. 2017. Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. Journal of Industrial and Engineering Chemistry 45:287–95. doi:10.1016/j.jiec.2016.09.036.
  • Yin, Z., Y. Liu, S. Liu, L. Jiang, X. Tan, G. Zeng, M. Li, S. Liu, S. Tian, and Y. Fang. 2018. Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper. The Science of the Total Environment 639:1530–42. doi:10.1016/j.scitotenv.2018.05.130.
  • Yorgun, S., and D. Yıldız. 2015. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers 53:122–31. doi:10.1016/j.jtice.2015.02.032.
  • Yorgun, S., N. Vural, and H. Demiral. 2009. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials 122 (1–3):189–94. doi:10.1016/j.micromeso.2009.02.032.
  • Yu, J. X., L. Y. Wang, R. A. Chi, Y. F. Zhang, Z. G. Xu, and J. Guo. 2013. Competitive adsorption of Pb2 and Cd2 on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science 268:163–70. doi:10.1016/j.apsusc.2012.12.047.
  • Yusop, M. F. M., H. A. Aziz, and M. A. Ahmad. 2017, October. Scavenging remazol brilliant blue R dye using microwave-assisted activated carbon from acacia sawdust: Equilibrium and kinetics studies. AIP Conference Proceedings 1892(1): 040018.
  • Zahoor, M., and F. A. Khan. 2018. Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arabian Journal of Chemistry 11 (5):729–38. doi:10.1016/j.arabjc.2014.08.025.
  • Zhang, F., X. Wang, J. Xionghui, and L. Ma. 2016. Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environmental Pollution 216:575–83. doi:10.1016/j.envpol.2016.06.013.
  • Zhang, G., J. Qu, H. Liu, A. T. Cooper, and R. Wu. 2007. CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68 (6):1058–66. doi:10.1016/j.chemosphere.2007.01.081.
  • Zhang, H., G. Xue, H. Chen, and X. Li. 2018. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere 191:64–71. doi:10.1016/j.chemosphere.2017.10.026.
  • Zhang, J., Q. Xie, J. Liu, M. Yang, and X. Yao. 2011. Role of Ni (NO3)2 in the preparation of a magnetic coal-based activated carbon. Mining Science and Technology 21 (4):599–603. doi:10.1016/j.mstc.2011.01.003.
  • Zhang, M., and B. Gao. 2013. Removal of arsenic, methylene blue, and pHospHate by biochar/AlOOH nanocomposite. Chemical Engineering Journal 226:286–92. doi:10.1016/j.cej.2013.04.077.
  • Zhang, P., W. Duan, H. Peng, B. Pan, and B. Xing. 2022. Functional biochar and its balanced design. ACS Environmental Au 2 (2):115–27. doi:10.1021/acsenvironau.1c00032.
  • Zhang, W., L. Wang, and H. Sun. 2011. Modifcations of black carbons and their influence on pyrene sorption. Chemosphere 85 (8):1306–11. doi:10.1016/j.chemosphere.2011.07.042.
  • Zhang, X., L. Lv, Y. Qin, M. Xu, X. Jia, and Z. Chen. 2018. Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood. Bioresource Technology 256:1–10. doi:10.1016/j.biortech.2018.01.145.
  • Zhao, H., and Y. Lang. 2018. Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. Journal of the Taiwan Institute of Chemical Engineers 88:152–60. doi:10.1016/j.jtice.2018.03.049.
  • Zhou, Q., B. Liao, L. Lin, W. Qiu, and Z. Song. 2018. Adsorption of Cu (II) and Cd (II) from aqueous solutions by ferromanganese binary oxide–biochar composites. The Science of the Total Environment 615:115–22. doi:10.1016/j.scitotenv.2017.09.220.
  • Zhou, X., J. Zhou, Y. Liu, J. Guo, J. Ren, and F. Zhou. 2018. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd (II) removal in water. Fuel 233:469–79. doi:10.1016/j.fuel.2018.06.075.
  • Zhu, S., X. Huang, D. Wang, L. Wang, and F. Ma. 2018. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Chemosphere 207:50–9. doi:10.1016/j.chemosphere.2018.05.046.
  • Zhu, Y., L. Zhang, F. M. Schappacher, R. Pöttgen, J. Shi, and S. Kaskel. 2008. Synthesis of magnetically separable porous carbon microspheres and their adsorption properties of pHenol and nitrobenzene from aqueous solution. The Journal of Physical Chemistry C 112 (23):8623–8. doi:10.1021/jp8010684.
  • Zhu, Y., C. Zheng, S. Wu, Y. Song, and B. Hu. 2018. Interaction of Eu (III) on magnetic biochar investigated by batch, spectroscopic and modeling techniques. Journal of Radioanalytical and Nuclear Chemistry 316 (3):1337–46. doi:10.1007/s10967-018-5839-8.
  • Zhu, Z., C. P. Huang, Y. Zhu, W. Wei, and H. Qin. 2018. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/CB) for the removal of pHospHate from water. Journal of Water Process Engineering 25:96–104. doi:10.1016/j.jwpe.2018.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.