95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Heat transfer study of water and air-based nanofluids with Al2O3 nanoparticles in a circular pipe using a multiphase approach

, &

References

  • Abubaker Alammari, S. B., and M. A. Ahmad Zaini. 2023. Thermal performance of nanofluids in elliptical zigzag tube: A numerical approach. Particulate Science and Technology 41 (6):815–21. doi: 10.1080/02726351.2022.2150345.
  • Ahmadi, A. A., E. Khodabandeh, H. Moghadasi, N. Malekian, O. A. Akbari, and M. Bahiraei. 2018. Numerical study of flow and heat transfer of water-Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian–Lagrangian approach. Journal of Thermal Analysis and Calorimetry 132 (1):651–65. doi: 10.1007/s10973-017-6798-y.
  • Al-Asadi, M. T., H. A. Mohammed, A. S. Kherbeet, and A. A. Al-Aswadi. 2017. Numerical study of assisting and opposing mixed convective nanofluid flows in an inclined circular pipe. International Communications in Heat and Mass Transfer 85:81–91. doi: 10.1016/j.icheatmasstransfer.2017.04.015.
  • Ali, N., A. M. Bahman, N. F. Aljuwayhel, S. A. Ebrahim, S. Mukherjee, and A. Alsayegh. 2021. Carbon‐based nanofluids and their advances towards heat transfer applications: A review. Nanomaterials 11 (6):1628. doi: 10.3390/nano11061628.
  • Alkasmoul, F. S., M. T. Al-Asadi, T. G. Myers, H. M. Thompson, and M. C. T. Wilson. 2018. A practical evaluation of the performance of Al2O3-water, TiO2-water and CuO-water nanofluids for convective cooling. International Journal of Heat and Mass Transfer 126:639–51. doi: 10.1016/j.ijheatmasstransfer.2018.05.072.
  • Alshayji, A., A. Asadi, and I. M. Alarifi. 2020. On the heat transfer effectiveness and pumping power assessment of a diamond-water nanofluid based on thermophysical properties: An experimental study. Powder Technology 373:397–410. doi: 10.1016/j.powtec.2020.06.068.
  • Arora, N., and M. Gupta. 2022. Experimental investigations on thermo-physical properties and stability of diamond-alumina based hybrid nanofluids. Journal of Dispersion Science and Technology. doi: 10.1080/01932691.2022.2090375.
  • Bar-Cohen, A., P. Wang, and E. Rahim. 2007. Thermal management of high heat flux nanoelectronic chips. Microgravity Science and Technology 19 (3-4):48–52. doi: 10.1007/BF02915748.
  • Briclot, A., J. F. Henry, C. Popa, C. T. Nguyen, and S. Fohanno. 2020. Experimental investigation of the heat and fluid flow of an Al2O3-water nanofluid in the laminar-turbulent transition region. International Journal of Thermal Sciences 158:106546. doi: 10.1016/j.ijthermalsci.2020.106546.
  • Burggraf, J., P. Farber, K. R. Karpaiya, and P. Ueberholz. 2021. Numerical investigation of laminar flow heat transfer of TiO2-water nanofluid in a heated pipe. Heat Transfer Engineering 42 (19-20):1635–47. doi: 10.1080/01457632.2020.1818379.
  • Esfahani, M. R., E. M. Languri, and M. R. Nunna. 2016. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid. International Communications in Heat and Mass Transfer 76:308–15. doi: 10.1016/j.icheatmasstransfer.2016.06.006.
  • Fujimoto, K., A. Shibata, and S. Torii. 2022. An experimental and numerical study of turbulent heat transfer enhancement for graphene nanofluids produced by pulsed discharge. International Journal of Thermofluids 16:100219. doi: 10.1016/j.ijft.2022.100219.
  • Ghasemi, S. E., S. Mohsenian, and A. A. Ranjbar. 2021. Numerical analysis on heat transfer of parabolic solar collector operating with nanofluid using Eulerian two-phase approach. Numerical Heat Transfer; Part A 80 (9):475–84. doi: 10.1080/10407782.2021.1950412.
  • Haghighi, E. B., A. T. Utomo, M. Ghanbarpour, A. I. T. Zavareh, H. Poth, R. Khodabandeh, A. Pacek, and B. E. Palm. 2014. Experimental study on convective heat transfer of nanofluids in turbulent flow: Methods of comparison of their performance. Experimental Thermal and Fluid Science 57:378–87. doi: 10.1016/j.expthermflusci.2014.05.019.
  • Heris, S. Z., S. G. Etemad, and M. N. Esfahany. 2006. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer 33 (4):529–35. doi: 10.1016/j.icheatmasstransfer.2006.01.005.
  • Hussein, A. M., H. K. Dawood, R. A. Bakara, and K. Kadirgamaa. 2017. Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system. Case Studies in Thermal Engineering 9:72–8. doi: 10.1016/j.csite.2016.11.005.
  • Kandlikar, S. G., and A. V. Bapat. 2007. Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal. Heat Transfer Engineering 28 (11):911–23. doi: 10.1080/01457630701421703.
  • Kanti, P., K. V. Sharma, R. C. G, and W. H. Azmi. 2021a. Experimental determination of thermophysical properties of Indonesian fly-ash nanofluid for heat transfer applications. Particulate Science and Technology 39 (5):597–606. doi: 10.1080/02726351.2020.1806971.
  • Kanti, P. K., K. V. Sharma, A. A. Minea, and V. Kesti. 2021c. Experimental and computational determination of heat transfer, entropy generation and pressure drop under turbulent flow in a tube with fly ash-Cu hybrid nanofluid. International Journal of Thermal Sciences 167:107016. doi: 10.1016/j.ijthermalsci.2021.107016.
  • Kanti, P., K. V. Sharma, Z. Said, and E. Bellos. 2022b. Numerical study on the thermo-hydraulic performance analysis of fly ash nanofluid. Journal of Thermal Analysis and Calorimetry 147 (3):2101–13. doi: 10.1007/s10973-020-10533-0.
  • Kanti, P. K., K. V. Sharma, Z. Said, M. Jamei, and K. M. Yashawantha. 2022a. Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: Prediction and optimization via ANN and MGGP model. Particulate Science and Technology 40 (2):182–95. doi: 10.1080/02726351.2021.1929610.
  • Kanti, P., K. V. Sharma, Z. Said and, and V. Kesti. 2021b. Entropy generation and friction factor analysis of fly ash nanofluids flowing in a horizontal tube: Experimental and numerical study. International Journal of Thermal Sciences 166:106972. doi: 10.1016/j.ijthermalsci.2021.106972.
  • Kherbeet, A. S., H. A. Mohammed, H. E. Ahmed, B. H. Salman, O. A. Alawi, M. R. Safaei, and M. T. Khazaal. 2016. Mixed convection nanofluid flow over microscale forward-facing step: Effect of inclination and step heights. International Communications in Heat and Mass Transfer 78:145–54. doi: 10.1016/j.icheatmasstransfer.2016.08.016.
  • Klazly, M., U. S. Mahabaleshwar, and G. Bognár. 2022. Comparison of single-phase Newtonian and non-Newtonian nanofluid and two-phase models for convective heat transfer of nanofluid flow in backward-facing step. Journal of Molecular Liquids 361:119607. doi: 10.1016/j.molliq.2022.119607.
  • Lauriat, G. 2018. On the uses of classical or improved heat transfer correlations for the predictions of convective thermal performances of water-Al2O3 nanofluids. Applied Thermal Engineering 129:1039–57. doi: 10.1016/j.applthermaleng.2017.10.033.
  • Lee, J. S., F. F. Faheem, J. T. Kim, J. D. Jung, J. Y. Kim, J. D. Kim, and C. H. Lee. 2009. Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics. IEEE Transactions on Advanced Packaging 32 (2):453–60. doi: 10.1109/TADVP.2009.2014121.
  • Lee, J., M. Kim, C. K. Hong, and S. E. Shim. 2007. Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Measurement Science and Technology 18 (12):3707–12. doi: 10.1088/0957-0233/18/12/005.
  • Li, Y., J. Zhou, S. Tung, E. Schneider, and S. Xi. 2009. A review on development of nanofluid preparation and characterization. Powder Technology 196 (2):89–101. doi: 10.1016/j.powtec.2009.07.025.
  • Lin, W., R. Shi, and J. Lin. 2022. Heat transfer and pressure drop of nanofluid with rod‐like particles in turbulent flows through a curved pipe. Entropy 24 (3):416. doi: 10.3390/e24030416.
  • Mahammedi, A., H. Ameur, D. M. Medjahed, and Y. Menni. 2020. Numerical study of turbulent flows and convective heat transfer of Al2O3-water nanofluids in a circular tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 77 (2):1–12. doi: 10.37934/arfmts.77.2.112.
  • Mansoori, Z., M. Saffar-Avval, H. Basirat Tabrizi, and G. Ahmadi. 2002. Modeling of heat transfer in turbulent gas–solid flow. International Journal of Heat and Mass Transfer 45 (6):1173–84. doi: 10.1016/S0017-9310(01)00234-4.
  • Marulasiddeshi, H. B., P. K. Kanti, S. B. Prakash, and S. N. Sridhara. 2023. Investigation of entropy generation and thermo-hydraulic characteristics of Al2O3–CuO hybrid nanofluid flow in a pipe at different inlet fluid temperatures. International Journal of Thermal Sciences 193:108541. doi: 10.1016/j.ijthermalsci.2023.108541.
  • Mirzaee, H., R. Rafee, S. Rashidi, and G. Ahmadi. 2020. Evaluation of different numerical models for prediction of pressure drop in laminar nanofluid flows. Energy Sources, Part A 1–19. doi: 10.1080/15567036.2020.1810178.
  • Mohamad, A. A. 2015. Myth about nano-fluid heat transfer enhancement. International Journal of Heat and Mass Transfer 86:397–403. doi: 10.1016/j.ijheatmasstransfer.2015.03.024.
  • Myers, T. G., M. M. MacDevette, and H. Ribera. 2013. A time-dependent model to determine the thermal conductivity of a nanofluid. Journal of Nanoparticle Research 15 (7):1–11. doi: 10.1007/s11051-013-1775-2.
  • Osman, S., M. Sharifpur, and J. P. Meyer. 2019. Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide-water nanofluids in a rectangular channel. International Journal of Heat and Mass Transfer 133:895–902. doi: 10.1016/j.ijheatmasstransfer.2018.12.169.
  • Pak, B. C., and Y. I. Cho. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11 (2):151–70. doi: 10.1080/08916159808946559.
  • Pavía, M., K. Alajami, P. Estellé, A. Desforges, and B. Vigolo. 2021. A critical review on thermal conductivity enhancement of graphene-based nanofluids. Advances in Colloid and Interface Science 294:102452. doi: 10.1016/j.cis.2021.102452.
  • Rahman, M. M., and A. Aziz. 2012. Heat transfer in water based nanofluids (TiO2-H2O, Al2O3-H2O and Cu-H2O) over a stretching cylinder. International Journal of Heat and Technology 30 (02):31–42. doi: 10.18280/ijht.300205.
  • Rajpoot, R. S., S. Dhinakaran, and M. M. Alam. 2021. Numerical analysis of mixed convective heat transfer from a square cylinder utilizing nanofluids with multi‐phase modeling approach. Energies 14 (17):5485. doi: 10.3390/en14175485.
  • Saha, G., and M. C. Paul. 2018. Investigation of the characteristics of nanofluids flow and heat transfer in a pipe using a single-phase model. International Communications in Heat and Mass Transfer 93:48–59. doi: 10.1016/j.icheatmasstransfer.2018.03.001.
  • Saleh, B., and L. S. Sundar. 2021. Thermosyphon flat plate collector with nanodiamond-water nanofluids: Properties, friction factor, heat transfer, thermal efficiency, and cost analysis. Arabian Journal for Science and Engineering 46 (8):7211–26. doi: 10.1007/s13369-021-05371-7.
  • Sandhu, H., and D. Gangacharyulu. 2017. An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Particulate Science and Technology 35 (5):547–54. doi: 10.1080/02726351.2016.1180335.
  • Sekrani, G., S. Poncet, and P. Proulx. 2018. Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in a uniformly heated pipe. Chemical Engineering Science 176:205–19. doi: 10.1016/j.ces.2017.10.044.
  • Sharmin, I., M. A. Gafur, and N. R. Dhar. 2020. Preparation and evaluation of a stable CNT-water based nano cutting fluid for machining hard-to-cut material. SN Applied Sciences 2 (4):1–18. doi: 10.1007/s42452-020-2416-x.
  • Soibam, S.,   Babita, and S. K. Sharma. 2020. Experimental and numerical investigations on hydrodynamics of nanofluid flowing in coiled tubes. Integrated Ferroelectrics 205(1):103–13. doi: 10.1080/10584587.2019.1675005.
  • Taler, D. 2016. A new heat transfer correlation for transition and turbulent fluid flow in tubes. International Journal of Thermal Sciences 108:108–22. doi: 10.1016/j.ijthermalsci.2016.04.022.
  • Trong Tam, N., N. Viet Phuong, P. Hong Khoi, P. Ngoc Minh, M. Afrand, P. Van Trinh, B. Hung Thang, G. Żyła, and P. Estellé. 2020. Carbon nanomaterial-based nanofluids for direct thermal solar absorption. Nanomaterials 10 (6):1199. doi: 10.3390/nano10061199.
  • Vafaei, S., J. A. Yeager, P. Daluga, and B. Scherer. 2021. Forced convection nanofluid heat transfer as a function of distance in microchannels. Materials 14 (11):3021. doi: 10.3390/ma14113021.
  • Veeramanikandan, K., S. Vignesh, B. Pitchia Krishnan, M. Mathanbabu, and M. Ashokkumar. 2021. Investigation of Al2O3-water nano fluid flow through the circular tube. Materials Today 46:8288–95. doi: 10.1016/j.matpr.2021.03.253.
  • Wong, I. J., and N. T. Tiong. 2021. Simulation approach on turbulent thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts. SN Applied Sciences 3 (3):329. doi: 10.1007/s42452-021-04317-w.
  • Heris, Z. S., M. Nasr Esfahany, and S. Etemad. 2007. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow 28 (2):203–10. doi: 10.1016/j.ijheatfluidflow.2006.05.001.
  • Zubir, M. N. M., A. Badarudin, S. N. Kazi, N. M. Huang, M. Misran, E. Sadeghinezhad, M. Mehrali, N. I. Syuhada, and S. Gharehkhani. 2015. Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science 66:290–303. doi: 10.1016/j.expthermflusci.2015.03.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.