178
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Erosion and flow visualization in centrifugal slurry pumps: a comprehensive review of recent developments and future outlook

&

References

  • Abdolahnejad, E., M. Moghimi, and S. Derakhshan. 2021. Experimental and numerical investigation of slip factor reduction in centrifugal slurry pump. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (4):1–14. doi: 10.1007/s40430-021-02831-x.
  • Alawadhi, K., B. Alzuwayer, T. A. Mohammad, and M. H. Buhemdi. 2021. Design and optimization of a centrifugal pump for slurry transport using the response surface method. Machines 9 (3):60. doi: 10.3390/machines9030060.
  • Alemi, H., S. A. Nourbakhsh, M. Raisee, and A. F. Najafi. 2015. Effects of volute curvature on performance of a low specific-speed centrifugal pump at design and off-design conditions. Journal of Turbomachinery 137 (4):041009. doi: 10.1115/1.4028766.
  • Bajawi, H. Y., B. Salim, and Z. Suhibani. 2014. Performance of a centrifugal slurry pump. Research Journal of Applied Sciences, Engineering and Technology 7 (8):1573–81. doi: 10.19026/rjaset.7.434.
  • Bandi, S., J. Banka, A. Kumar, and A. K. Rai. 2023. Effects of sediment properties on abrasive erosion of a centrifugal pump. Chemical Engineering Science 277:118873. doi: 10.1016/j.ces.2023.118873.
  • Barmaki, R., and M. B. Ehghaghi. 2019. Experimental investigation of a centrifugal pump hydraulic performance in hydraulic transmission of solids. Mechanics and Mechanical Engineering 23 (1):259–70. doi: 10.2478/mme-2019-0035.
  • Benretem, A., A. Haddouche, H. Cheghib, and S. Saad. 2007. Influence of solid particles on centrifugal pump characteristics. Journal of Engineering and Applied Sciences 2 (1):244–7.
  • Burgess, K. E., and J. A. Reizes. 1976. The effect of sizing, specific gravity and concentration on the performance of centrifugal slurry pumps. Proceedings of the Institution of Mechanical Engineers 190 (1):391–9. doi: 10.1243/PIME_PROC_1976_190_041_02.
  • Cader, T., O. Masbernat, and M. C. Roco. 1994. Two-phase velocity distributions and overall performance of a centrifugal slurry pump. Journal of Fluids Engineering 116 (2):316–23. doi: 10.1115/1.2910274.
  • Cai, X., S. P. Zhou, and S. Li. 2016. Study on the influence of back blade shape on the wear characteristics of centrifugal slurry pump. IOP Conference Series: Materials Science and Engineering 129 (1):012058. doi: 10.1088/1757-899X/129/1/012058.
  • Chandel, S., S. N. Singh, and V. Seshadri. 2011. Effect of additive on the performance characteristics of centrifugal and progressive cavity slurry pumps with high concentration fly ash slurries. Coal Combustion and Gasification Products 3 (1):67–74. doi: 10.4177/ccgp-d-11-000101.
  • Chen, M., L. Tan, H. Fan, C. Wang, and D. Liu. 2022. Solid-liquid multiphase flow and erosion characteristics of a centrifugal pump in the energy storage pump station. Journal of Energy Storage 56:105916. doi: 10.1016/j.est.2022.105916.
  • Chen, Q., and D. Y. Li. 2003. Computer simulation of solid particle erosion. Wear 254 (3–4):203–10. doi: 10.1016/S0043-1648(03)00006-1.
  • Cheng, W., B. Gu, C. Shao, and Y. Wang. 2017. Hydraulic characteristics of molten salt pump transporting solid-liquid two-phase medium. Nuclear Engineering and Design 324:220–30. doi: 10.1016/j.nucengdes.2017.08.036.
  • Chitrakar, S., H. P. Neopane, and O. G. Dahlhaug. 2016. Study of the simultaneous effects of secondary flow and sediment erosion in Francis turbines. Renewable Energy 97:881–91. doi: 10.1016/j.renene.2016.06.007.
  • Engin, T., and M. Gur. 2001. Performance characteristics of a centrifugal pump impeller with running tip clearance pumping solid-liquid mixtures. Journal of Fluids Engineering 123 (3):532–8. doi: 10.1115/1.1379034.
  • Engin, T., and M. Gur. 2003. Comparative evaluation of some existing correlations to predict head degradation of centrifugal slurry pumps. Journal of Fluids Engineering 125 (1):149–57. doi: 10.1115/1.1523065.
  • Furlan, J. M., M. Garman, J. Kadambi, R. J. Visintainer, and K. V. Pagalthivarthi. 2015. Ultrasonic measurements of local particle velocity and concentration within the casing of a centrifugal pump. In Fluids Engineering Division Summer Meeting (Vol. 57212, p. V001T31A003), July. doi: 10.1115/AJKFluids2015-31217.
  • Gahlot, V. K., V. Seshadri, and R. C. Malhotra. 1992. Effect of density, size distribution, and concentration of solid on the characteristics of centrifugal pumps. Journal of Fluids Engineering 114 (3):386–9. doi: 10.1115/1.2910042.
  • Gandhi, B. K., and S. V. Borse. 2004. Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles. Wear 257 (1–2):73–9. doi: 10.1016/j.wear.2003.10.013.
  • Gandhi, B. K., S. N. Singh, and V. Seshadri. 1998. Prediction of performance characteristics of a centrifugal slurry pump handling clear liquid. Indian Journal of Engineering and Materials Sciences 5:91–6.
  • Gandhi, B. K., S. N. Singh, and V. Seshadri. 2001. Performance characteristics of centrifugal slurry pumps. Journal of Fluids Engineering 123 (2):271–80. doi: 10.1115/1.1366322.
  • Gandhi, B. K., S. N. Singh, and V. Seshadri. 2002. Effect of speed on the performance characteristics of a centrifugal slurry pump. Journal of Hydraulic Engineering 128 (2):225–33. doi: 10.1061/ASCE0733-94292002128:2225.
  • Gelfi, M., A. Pola, L. Girelli, A. Zacco, M. Masotti, and G. M. la Vecchia. 2019. Effect of heat treatment on microstructure and erosion resistance of white cast irons for slurry pumping applications. Wear 428–429:438–48. doi: 10.1016/j.wear.2019.03.011.
  • Gu, Y., N. Liu, J. Mou, P. Zhou, H. Qian, and D. Dai. 2019. Study on solid–liquid two-phase flow characteristics of centrifugal pump impeller with non-smooth surface. Advances in Mechanical Engineering 11 (5):168781401984826. doi: 10.1177/1687814019848269.
  • Kadambi, J. R., P. Charoenngam, A. Subramanian, M. P. Wernet, J. M. Sankovic, G. Addie, and R. Courtwright. 2004. Investigations of particle velocities in a slurry pump using PIV: Part 1, the tongue and adjacent channel flow. Journal of Energy Resources Technology 126 (4):271–8. doi: 10.1115/1.1786928.
  • Kazim, K. A., B. Maiti, and P. Chand. 1997. A correlation to predict the performance characteristics of centrifugal pumps handling slurries. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 211 (2):147–57. doi: 10.1243/0957650971537060.
  • Keller, J., E. Blanco, R. Barrio, and J. Parrondo. 2014. PIV measurements of the unsteady flow structures in a volute centrifugal pump at a high flow rate. Experiments in Fluids 55 (10):1820. doi: 10.1007/s00348-014-1820-7.
  • Khalil, M. F., S. Z. Kassab, A. A. A. Naby, and A. Azouz. 2013. Performance characteristics of centrifugal pump conveying soft slurry. American Journal of Mechanical Engineering 1 (5):103–12. doi: 10.12691/ajme-1-5-1.
  • Krüger, S., N. Martin, and P. Dupont. 2010. Assessment of wear erosion in pump impellers. Proceedings of the 26th International Pump Users Symposium, Turbomachinery Laboratory, Texas A&M University. doi: 10.21423/R1N63C.
  • Kumar, S., B. K. Gandhi, and S. K. Mohapatra. 2014. Performance characteristics of centrifugal slurry pump with multi-sized particulate bottom and fly ash mixtures. Particulate Science and Technology 32 (5):466–76. doi: 10.1080/02726351.2014.894163.
  • Lai, F., Y. Wang, S. A. Ei-Shahat, G. Li, and X. Zhu. 2019. Numerical study of solid particle erosion in a centrifugal pump for liquid–solid flow. Journal of Fluids Engineering. doi: 10.1115/1.4043580.
  • Lei, H. M., Y. X. Xiao, F. N. Chen, S. H. Ahn, Z. W. Wang, Z. H. Gui, Y. Y. Luo, and X. R. Zhao. 2018. Numerical simulation of solid-liquid two-phase flow in a centrifugal pump with different wear blades degree. IOP Conference Series: Earth and Environmental Science 163 (1):012027. doi: 10.1088/1755-1315/163/1/012027.
  • Levy, A. V., J. Yan, and J. Patterson. 1986. Elevated temperature erosion of steels. Wear 108 (1):43–60. doi: 10.1016/0043-1648(86)90087-6.
  • Li, X., H. Chen, B. Chen, X. Luo, B. Yang, and Z. Zhu. 2020. Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method. Renewable Energy 162:561–74. doi: 10.1016/j.renene.2020.08.103.
  • Li, X., B. Chen, X. Luo, and Z. Zhu. 2020. Effects of flow pattern on hydraulic performance and energy conversion characterization in a centrifugal pump. Renewable Energy 151:475–87. doi: 10.1016/j.renene.2019.11.049.
  • Li, M., Y. He, R. Jiang, J. Zhang, H. Zhang, W. Liu, and Y. Liu. 2022. Analysis of Minimum specific energy consumption and optimal transport concentration of slurry pipeline transport systems. Particuology 66:38–47. doi: 10.1016/j.partic.2021.08.004.
  • Li, Y., Z. Zhu, W. He, and Z. He. 2012. Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance. Chinese Journal of Mechanical Engineering, 25 (6):1184–9. doi: 10.3901/CJME.2012.06.1184.
  • Noon, A. A., and M.-H. Kim. 2016. Erosion wear on centrifugal pump casing due to slurry flow. Wear 364–365:103–11. doi: 10.1016/j.wear.2016.07.005.
  • Pagalthivarthi, K. V., J. M. Furlan, and R. J. Visintainer. 2013. Effect of particle size distribution on erosion wear in centrifugal pump casings. In Fluids Engineering Division Summer Meeting (Vol. 55560, p. V01CT20A005), American Society of Mechanical Engineers. doi: 10.1115/FEDSM2013-16218.
  • Pagalthivarthi, K. V., J. M. Furlan, and R. J. Visintainer. 2017. Effective particle size representation for erosion wear in centrifugal pump casings. In Fluids Engineering Division Summer Meeting (Vol. 58066, p. V01CT15A004). American Society of Mechanical Engineers. doi: 10.1115/FEDSM2017-69240.
  • Peng, G. J., Y. Y. Luo, and Z. W. Wang. 2015. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations. IOP Conference Series: Materials Science and Engineering 72 (4):042048. doi: 10.1088/1757-899X/72/4/042048.
  • Peng, G., F. Fan, L. Zhou, X. Huang, and J. Ma. 2021. Optimal hydraulic design to minimize erosive wear in a centrifugal slurry pump impeller. Engineering Failure Analysis 120:105105. doi: 10.1016/j.engfailanal.2020.105105.
  • Peng, G., Q. Chen, L. Bai, Z. Hu, L. Zhou, and X. Huang. 2021. Wear mechanism investigation in a centrifugal slurry pump impeller by numerical simulation and experiments. Engineering Failure Analysis 128:105637. doi: 10.1016/j.engfailanal.2021.105637.
  • Peng, G., X. Huang, L. Zhou, G. Zhou, and H. Zhou. 2020. Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Engineering Failure Analysis 114:104602. doi: 10.1016/j.engfailanal.2020.104602.
  • Perissinotto, R. M., R. F. Cerqueira, W. D. Fonseca, W. Monte Verde, J. L. Biazussi, A. C. Bannwart, E. M. Franklin, and M. S. Castro. 2023. Particle image velocimetry in a centrifugal pump: Details of the fluid flow at different operation conditions. Flow Measurement and Instrumentation 89:102282. doi: 10.1016/j.flowmeasinst.2022.102282.
  • Perissinotto, R. M., W. Monte Verde, C. E. Perles, J. L. Biazussi, M. S. Castro, and A. C. Bannwart. 2020. Experimental analysis on the behavior of water drops dispersed in oil within a centrifugal pump impeller. Experimental Thermal and Fluid Science. 112:109969. doi: 10.1016/j.expthermflusci.2019.109969.
  • Qian, Z., Z. Wang, K. Zhang, Y. Wu, and Y. Wu. 2014. Analysis of silt abrasion and blade shape optimization in a centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 228 (5):585–91. doi: 10.1177/0957650914530294.
  • Rai, A. K., A. Kumar, and T. Staubli. 2017. Hydro-abrasive erosion in Pelton buckets: Classification and field study. Wear 392–393:8–20. doi: 10.1016/j.wear.2017.08.016.
  • Rai, A. K., A. Kumar, T. Staubli, and Y. X. Xiao. 2020. Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines. Renewable Energy. 160:396–408. doi: 10.1016/j.renene.2020.06.117.
  • Rocco, M., and G. R. Addie. 1983. Analytical model and experimental studies on slurry flow and erosion flow and erosion in pump casings. In International Technical Conference on Slurry Transportation 8:263–76.
  • Roco, M. C., P. Nair, and G. R. Addie. 1986. Casing head loss in centrifugal slurry pumps. Journal of Fluids Engineering 108 (4):453–64. doi: 10.1115/1.3242603.
  • Selim, S. M., M. S. El-Kadi, M. A. Younes, M. A. Hosien, and I. R. Teaima. 2009. The effect of solid-liquid mixture on cavitation characteristics of a centrifugal pump engineering. Research Journal 32 (4):511–20. doi: 10.21608/erjm.2009.69546.
  • Shen, Z., and W. Chu. 2018. Effect of particle parameters on erosion wear and performance of screw centrifugal pump. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids Engineering, Pittsburgh, Pennsylvania, V007T09A018. ASME. doi: 10.1115/IMECE2018-88586.
  • Shen, Z., W. Chu, X. Li, and W. Dong. 2019. Sediment erosion in the impeller of a double-suction centrifugal pump–A case study of the Jingtai Yellow River Irrigation Project, China. Wear 422-423:269–79. doi: 10.1016/j.wear.2019.01.088.
  • Shi, B., J. J. Wei, and Y. Zhang. 2015. Phase discrimination and a high accuracy algorithm for PIV image processing of particle–fluid two-phase flow inside high-speed rotating centrifugal slurry pump. Flow Measurement and Instrumentation 45:93–104. doi: 10.1016/j.flowmeasinst.2015.05.002.
  • Shi, B., and J. Wei. 2014. Numerical simulation of 3D solid-liquid turbulent flow in a low specific speed centrifugal pump: Flow field analysis. Advances in Mechanical Engineering 6:814108. doi: 10.1155/2014/814108.
  • Shi, B., J. Wei, and Y. Zhang. 2017. A novel experimental facility for measuring internal flow of Solid-liquid two-phase flow in a centrifugal pump by PIV. International Journal of Multiphase Flow 89:266–76. doi: 10.1016/j.ijmultiphaseflow.2016.11.002.
  • Shi, B., J. Pan, L. Wu, X. Zhang, Y. Qiu, and Y. Zhang. 2020. A prediction method of wear for volute casing of a centrifugal slurry pump. Geofluids 2020:1–12. doi: 10.1155/2020/8847087.
  • Tao, Y., S. Yuan, J. Liu, F. Zhang, and J. Tao. 2016. Influence of blade thickness on transient flow characteristics of centrifugal slurry pump with semi-open impeller. Chinese Journal of Mechanical Engineering 29 (6):1209–17. doi: 10.3901/CJME.2016.0824.098.
  • Tao, Y., S. Yuan, J. Liu, F. Zhang, and J. Tao. 2017. The influence of the blade thickness on the pressure pulsations in a ceramic centrifugal slurry pump with annular volute. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 231 (5):415–31. doi: 10.1177/0957650917708495.
  • Tao, Y., Y. Bai, and Y. Wu. 2021. Influence of blade thickness on solid–liquid two-phase flow and impeller wear in a ceramic centrifugal slurry pump. Processes 9 (8):1259. doi: 10.3390/pr9081259.
  • Tarodiya, R., and B. K. Gandhi. 2019a. Experimental investigation on slurry erosion behavior of 304L steel, grey cast iron, and high chromium white cast iron. Journal of Tribology 141 (9):091602. doi: 10.1115/1.4043903.
  • Tarodiya, R., and B. K. Gandhi. 2019b. Experimental investigation of centrifugal slurry pump casing wear handling solid-liquid mixtures. Wear 434–435:202972. doi: 10.1016/j.wear.2019.202972.
  • Tarodiya, R., and B. K. Gandhi. 2021. Numerical investigation of erosive wear of a centrifugal slurry pump due to solid-liquid flow. Journal of Tribology 143 (10):101702. doi: 10.1115/1.4049596.
  • Tian, H. H., G. R. Addie, and K. V. Pagalthivarthi. 2005. Determination of wear coefficients for erosive wear prediction through Coriolis wear testing. Wear 259 (1–6):160–70. doi: 10.1016/j.wear.2005.02.097.
  • Tian, H. H., G. R. Addie, and R. J. Visintainer. 2009. Erosion–corrosion performance of high-Cr cast iron alloys in flowing liquid–solid slurries. Wear 267 (11):2039–47. doi: 10.1016/j.wear.2009.08.007.
  • Vlasak, P., and Z. Chara. 2011. Effect of particle size distribution and concentration on flow behavior of dense slurries. Particulate Science and Technology 29 (1):53–65. doi: 10.1080/02726351.2010.508509.
  • Walker, C. I., and A. Goulas. 1984. Performance characteristics of centrifugal pumps when handling non-Newtonian homogeneous slurries. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering 198 (1):41–9. doi: 10.1243/PIME_PROC_1984_198_006_02.
  • Wang, H., Z. Tan, S. Kuang, and A. Yu. 2022. Numerical modeling and analysis of particle-fluid flow and wall erosion in centrifugal slurry pumps under different solid concentrations. Powder Technology 410:117861. doi: 10.1016/j.powtec.2022.117861.
  • Wang, L. k., J. l Lu, W. l Liao, P. C. Guo, J. j Feng, X. q Luo, and W. Wang. 2021. Numerical investigation of the effect of T-shaped blade on the energy performance improvement of a semi-open centrifugal pump. Journal of Hydrodynamics 33 (4):736–46. doi: 10.1007/s42241-021-0066-0.
  • Wang, P. W., J. Zhao, W. J. Zou, and S. G. Hu. 2012. Experimental study and numerical simulation of the solid-phase particles’ influence on outside characteristics of slurry pump. IOP Conference Series: Earth and Environmental Science 15 (6):062057. doi: 10.1088/1755-1315/15/6/062057.
  • Wang, Y., W. Li, T. He, C. Han, Z. Zhu, and Z. Lin. 2021. The effect of solid particle size and concentrations on internal flow and external characteristics of the dense fine particles solid–liquid two-phase centrifugal pump under low flow condition. AIP Advances 11 (8):085309. doi: 10.1063/5.0054275.
  • Wang, Y., W. Li, T. He, H. Liu, C. Han, and Z. Zhu. 2022. Experimental study on the influence of particle diameter, mass concentration, and impeller material on the wear performance of solid–liquid two-phase centrifugal pump blade. Frontiers in Energy Research 10:893385. doi: 10.3389/fenrg.2022.893385.
  • Wang, Y., X. Wang, J. Chen, G. Li, H. Liu, and W. Xiong. 2022c. An experimental insight into dynamic characteristics and wear of centrifugal pump handling multi-size particulate slurry. Engineering Failure Analysis 138:106303. doi: 10.1016/j.engfailanal.2022.106303.
  • Wu, Y., H. Yuan, J. Shao, and S. Liu. 2009. Experimental study on internal flow of a mini centrifugal pump by PIV measurement. International Journal of Fluid Machinery and Systems 2 (2):121–6. doi: 10.5293/IJFMS.2009.2.2.121.
  • Xiao, Y., B. Guo, S. H. Ahn, Y. Luo, Z. Wang, G. Shi, and Y. Li. 2019. Slurry flow and erosion prediction in a centrifugal pump after long-term operation. Energies 12 (8):1523. doi: 10.3390/en12081523.
  • Yan, C., J. Liu, S. Zheng, B. Huang, and J. Dai. 2020. Study on the effects of the wear-rings clearance on the solid-liquid two-phase flow characteristics of centrifugal pumps. Symmetry 12 (12):2003. doi: 10.3390/sym12122003.
  • Zhang, N., B. Gao, Z. Li, D. Ni, and Q. Jiang. 2018. Unsteady flow structure and its evolution in a low specific speed centrifugal pump measured by PIV. Experimental Thermal and Fluid Science 97:133–44. doi: 10.1016/j.expthermflusci.2018.04.013.
  • Zhang, Y., Y. Li, B. Cui, Z. Zhu, and H. Dou. 2013. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump. Chinese Journal of Mechanical Engineering 26 (1):53–60. doi: 10.3901/CJME.2013.01.053.
  • Zhang, Y.-L., X.-J. Yang, and Y.-J. Zhao. 2017. Numerical calculation of solid-liquid two-phase flow inside a small sewage pump. The International Journal of Engineering and Science 06 (03):14–20. doi: 10.9790/1813-0603021420.
  • Zhao, R. J., Y. L. Zhao, D. S. Zhang, Y. Li, and L. L. Geng. 2021. Numerical investigation of the characteristics of erosion in a centrifugal pump for transporting dilute particle-laden flows. Journal of Marine Science and Engineering 9 (9):961. doi: 10.3390/jmse9090961.
  • Zhao, W., and G. Zhao. 2018. Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump. Journal of Mechanical Science and Technology 32 (1):167–76. doi: 10.1007/s12206-017-1218-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.