92
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dust-removal performance of an improved spherical cylindrical ECP under magnetic confinement effect

, , , , , & show all

References

  • Babaoğlu, N. U., F. Parvaz, S. H. Hosseini, K. Elsayed, and G. Ahmadi. 2021. Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology. 384:82–99. doi: 10.1016/j.powtec.2021.02.008.
  • Bai, J.-C., S.-Y. Wu, A.-S. Lee, and C.-Y. Chu. 2007. Filtration of dust in a circulating granular bed filter with conical louver plates (CGBF-CLPs). Journal of Hazardous Materials 142 (1–2):324–31. doi: 10.1016/j.jha.zmat.2006.08.026.
  • Bai, Y., H. Ji, Y. Liu, L. Li, and S. Yang. 2021. Analysis of bubble flow mechanism and characteristics in gas-liquid cyclone separator. Processes 9 (1):123. doi: 10.3390/pr9010123.
  • Beaulac, P., M. Issa, A. Ilinca, and J. Brousseau. 2022. Parameters affecting dust collector efficiency for pneumatic conveying: A review. Energies 15 (3):916. doi: 10.3390/en15030916.
  • Boericke, R. R., W. G. Giles, P. W. Dietz, G. A. Kallio, and J. T. Kuo. 1983. Electro cyclone for high-temperature, high-pressure dust removal. Journal of Energy 7 (1):43–9. doi: 10.2514/3.62635.
  • Chen, C. J. 2001. Enhanced collection efficiency for cyclone by applying an external electric field. Separation Science and Technology. 36 (3):499–511. doi: 10.1081/SS-100102941.
  • Cheng, M.-D., S. L. Allman, G. M. Ludtka, and L. R. Avens. 2014. Collection of airborne particles by a high-gradient permanent magnetic method. Journal of Aerosol Science. 77:1–9. doi: 10.1016/j.jaerosci.2014.07.002.
  • Cristea, E. D., and P. Conti. 2016. Coupled 3-D CFD-DDPM numerical simulation of turbulent swirling gas-particle flow within cyclone suspension preheater of cement kilns. Fluids Engineering Division of the American Society of Mechanical Engineers. 1A V01AT03A004. doi: 10.1115/FEDSM2016-7596.
  • Duran, J. Z., and E. B. Caldona. 2020. Design of an activated carbon equipped-cyclone separator and its performance on particulate matter removal. Particulate Science and Technology 38 (6):694–702. doi: 10.1080/02726351.2019.1607637.
  • Ebadat, V., and R. W. Prugh. 2007. Case study: Aluminum-dust explosion. Process Safety Progress 26 (4):324–9. doi: 10.1002/prs.10231.
  • Emmrich, J., and G. Wozniak. 2015. A contribution to the experimental investigation of hybrid filter cyclones for particle separation from gases. Forsch Ingenieurwes.79 (1-2):75–85 doi: 10.1007/s10010-015-0192-3.
  • Fatahian, H., E. Fatahian, M. Eshagh Nimvari, and G. Ahmadi. 2021. Novel designs for square cyclone using rounded corner and double-inverted cones shapes. Powder Technology. 380:67–79. doi: 10.1016/j.powtec.2020.11.034.
  • Feng, X. 2014. Application of magnetic technology in the prevention and treatment of industrial waste. ICICTA. doi: 10.1109/ICICTA.2014.35.
  • Hoffmann, A. C., A. Skorpen, and Y. F. Chang. 2019. Positron emission particle tracking and CFD investigation of hydrocyclones acting on liquids of varying viscosity. Chemical Engineering Sciences. 200:310–9. doi: 10.1016/j.ces.2019.01.061.
  • Izzotti, A., P. Spatera, Z. Khalid, and A. Pulliero. 2022. Importance of punctual monitoring to evaluate the health effects of airborne particulate matter. International Journal of Environmental Research and Public Health 19 (17):10587. doi: 10.3390/ijerph191710587.
  • Jafarnezhad, A., H. Salarian, S. Kheradmand, and J. Khaleghinia. 2021. Performance improvement of a cyclone separator using different shapes of vortex finder under high-temperature operating condition. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (2):81. doi: 10.1007/s40430-020-02783-8.
  • Jung, C. H., and Y. P. Kim. 2013. Analysis on the bias of the PM2.5 separator for polydispersed aerosol size distribution. Separation and Purification Technology. 104:167–74. doi: 10.1016/j.seppur.2012.10.048.
  • Kim, H. T., and K. W. Lee. 1990. Experimental study of particle collection by small cyclones. Aerosol Science and Technology 12 (4):1003–15. doi: 10.1080/02786829008959410.
  • Kolla, S. S., R. S. Mohan, and O. Shoham. 2021. Swirling flow regimes and gas carry-under in gas-liquid cylindrical cyclone separator in a separated outlet configuration. Journal of Energy. Resources Technology 143 (4):042304. doi: 10.1115/1.4048230.
  • Kumar, P., G. Kalaiarasan, A. E. Porter, A. Pinna, M. M. Kłosowski, P. Demokritou, K. F. Chung, C. Pain, D. K. Arvind, R. Arcucci, et al. 2021. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. The Science of the Total Environment 756:143553. doi: 10.1016/j.scitotenv.2020.143553.
  • Li, X., B. Ruan, P. K. Hopke, and T. Mehmood. 2019. On the performance parameters of PM2.5 and PM1 size separators for ambient aerosol monitoring. Aerosol and Air Quality Research 19 (10):2173–84. qr.2019.03.0103. doi: 10.4209/aa.
  • Luo, J. J., H. Zhang, D. Yang, et al. 2014. The model for the separation efficiency of the electrostatic cyclone dust collector. Lecture. Notes on Electrical. Engineering 262:695–703. doi: 10.1007/978-3-642-39581-9_68.
  • Nassaj, O. R., D. Toghraie, and M. Afrand. 2021. Effects of multi inlet guide channels on the performance of a cyclone separator. Powder Technology. 381:488. doi: 10.1016/j.powtec.2020.12.024.
  • Nekrasov, A. V., E. V. Romanyuk, and D. V. Kargashilov. 2017. Mathematical model for the motion of precipitated dust particles in a high-efficiency cyclone dust collector for explosion-hazardous production. Chemical and Petroleum Engineering 53 (3-4):190–4. doi: 10.1007/s10556-017-0320-z.
  • Pan, J., Q. Shen, X. Cui, J. Wu, L. Ma, C. Tian, P. Fu, and H. Wang. 2021. Cyclones of different sizes and underflow leakage for aerosol particles separation enhancement. Journal of Cleaner Production. 280:124379. ro.2020.124379. doi: 10.1016/j.jclep.
  • Park, D., and J. S. Go. 2020. Design of cyclone separator critical diameter model based on machine learning and CFD. Processes 8 (11):1521. doi: 10.3390/pr8111521.
  • Pham, S., and A. Dinh. 2019. An air sampler with particle filter using innovative quad-inlet cyclone separator and high voltage trap. IEEE Sensors Journal 19 (22):10176–86. doi: 10.1109/JSEN.2019.2932689.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2017a. Experimental and 3D-CFD investigation on optimization of the air separator structural parameters for maximum separation efficiency. Separation Science and Technology. 52 (5):903–29. doi: 10.1080/01496395.2016.1267755.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2017b. Improving the energetical performance of vortex tubes based on a comparison between parallel, Ranque-Hilsch and double-circuit vortex tubes using both experimental and CFD approaches. Applied Thermal Engineering. 123:1223–36. doi: 10.1016/j.applthermaleng.2017.05.164.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2018. Experimental and CFD analysis on thermal performance of double-circuit vortex tube (DCVT)-geometrical optimization, energy transfer and flow structural analysis. Applied Thermal Engineering. 128:1223–37. doi: 10.1016/j.applthermaleng.2017.09.112.
  • Ritter, J. A., A. D. Ebner, K. D. Daniel, and K. L. Stewart. 2004. Application of high gradient magnetic separation principles to magnetic drug targeting. Journal of Magnetism and Magnetic Materials. 280 (2–3):184–201. doi: 10.1016/j.jmmm.2004.03.012.
  • Shahna, F. G., A. Bahrami, and F. Farasati. 2012. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company. Industrial Health 50 (5):450–7. doi: 10.2486/indhealth.MS1369.
  • Shi, Z., C. Wang, X. Song, S. Jia, and L. Wang. 2015. Stepwise simulation on the motion of a single cathode spot of vacuum arc in external transverse magnetic field. IEEE Transactions on Plasma Science 43 (1):472–9. doi: 10.1109/TPS.2014.2373635.
  • Shin, Y., S. Kim, J. Park, S. W. Lee, and K. An. 2022. Effectiveness of particulate matter forecasting and warning systems within urban areas. Sustainability 14 (9):5394. doi: 10.3390/su14095394.
  • Srinives, S., T. Charinpanitkul, and W. Tanthapanichakoon. 2010. Utilization of rice-husk packed beds as fine dust collectors at heavy dust loadings. Journal of Industrial and Engineering Chemistry. 16 (2):224–9. doi: 10.1016/j.jiec.2009.09.069.
  • Venkatesh, S., S. P. Sivapirakasam, M. Sakthivel, S. Ganeshkumar, M. Mahendhira Prabhu, and M. Naveenkumar. 2021. Experimental and numerical investigation in the series arrangement square cyclone separator. Powder Technology. 383:93–103. doi: 10.1016/j.powtec.2021.01.031.
  • Wang, Y., K. Gui, M. Shi, and C. Li. 2008. Removal of dust from flue gas in magnetically stabilized fluidized bed. Particuology 6 (2):116–9. doi: 10.1016/j.partic.2007.09.001.
  • Xiang, R., S. H. Park, and K. W. Lee. 2001. Effects of cone dimension on cyclone performance. Journal of Aerosol Science. 32 (4):549–61. doi: 10.1016/S0021-8502(00)00094-X.
  • Yang, L., S. H. Wang, and X. M. Wang. 2004. Numerical simulation of flow filed for mist eliminator in wet desulfurization tower. Esat China Electric Power 32 (10):4–6.
  • Yang, Z. G. 2018. Experimental study on the separaton performance of spherical cyclone. Shandong University of Science and Technology 127:76–87. in Chinese).
  • You, C. F., and Y. Li. 2013. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system. Environmental Science & Technology 47 (6):2754–9. doi: 10.1021/es304333z.
  • Zhao, B., S. G. Li, H. F. Lin, and X. X. Liu. 2023. Influence of air inlet distance on coal dust pollution characteristics in working environment during tunneling based on CFD method. Particulate Science and Technology. Advance online publication. doi: 10.1080/02726351.2023.2200372.
  • Zhang, J. P., D. Chen, and Z. T. Zha. 2020. Theoretical and experimental study of trapping PM2.5 particles via magnetic confinement effect in a multi-electric field ESP. Powder Technology. 368:70–9. doi: 10.1016/j.powtec.2020.04.025.
  • Zhang, J. P., J. Q. Wang, Z. X. Jiang, and D. C. Xu. 2022. Trapping PM2.5 particles from electrostatic precipitator equipped with magnetic field under different gas velocities. Process Safety and Environmental Protection 158:115–22. doi: 10.1016/j.psep.2021.11.035.
  • Zhang, Y. H., Y. Z. Liu, H. Huo, et al. 1998. The progress in the cyclone dust catcher. Journal of North University of China 4:44–8. in Chinese).
  • Zhang, Y., M. Yang, L. Jiang, H. Wang, J. Xu, and J. Yang. 2021. High concentration fine particle separation performance in hydrocyclones. Minerals 11 (3):307. doi: 10.3390/min11030307.
  • Zhou, Y., Z. Xu, G. Xiao, X. Hu, H. Chen, R. Zhang, X. Luo, J. Wang, and Y. Yang. 2020. Monitoring the hydrodynamics and critical variation of separation efficiency of cyclone separator via acoustic emission technique with multiple analysis methods. Powder Technology. 373:174–83. doi: 10.1016/j.powtec.2020.06.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.