128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Direct numerical simulation of fluid/solid particles flow inside a channel

References

  • Batchelor, G. K., and J.-T. Green. 1972. The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. Journal of Fluid Mechanics 56 (2):375–400. doi: 10.1017/S0022112072002927.
  • Decoene, A., S. Martin, and B. Maury. 2018. Direct simulation of rigid particles in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics 260:1–25. doi: 10.1016/j.jnnfm.2018.06.006.
  • Feng, Z.-G, and E. E. Michaelides. 2004. The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. Journal of Computational Physics 195 (2):602–28. doi: 10.1016/j.jcp.2003.10.013.
  • Glowinski, R., T.-W. Pan, T. I. Hesla, and D. D. Joseph. 1999. A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow 25 (5):755–94. doi: 10.1016/S0301-9322(98)00048-2.
  • Hecht, F. 2012. New development in FreeFem++. Journal of numerical mathematics 20 (3ń4):251–266.
  • Janela, J., A. Lefebvre, and B. Maury. 2005. A penalty method for the simulation of fluid-rigid body interaction. ESAIM: Proceedings 14:115–23. doi: 10.1051/proc:2005010.
  • Kuruneru, S. T. W., E. Sauret, S. C. Saha, and Y. Gu. 2016. Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers. Applied Energy 184:531–47. doi: 10.1016/j.apenergy.2016.10.044.
  • Kuruneru, S. T. W., Maréchal, E., Michaël, D., Khelladi, S., . Ravelet, F., Saha, S.C., Sauret, E., and Gu, Y. 2019. A comparative study of mixed resolved–unresolved CFD-DEM and unresolved CFD-DEM methods for the solution of particle-laden liquid flows. Archives of Computational Methods in Engineering 26 (4):1239–54. doi: 10.1007/s11831-018-9282-3.
  • Lefebvre, A. 2007. Fluid-particle simulations with FreeFem++. ESAIM: Proceedings 18:120–32. doi: 10.1051/proc:071810.
  • Li, M-z., Y-p He, R-h Jiang, J. Zhang, H-s Zhang, W-h Liu, M.-X. Zhang, and L. Zeng. 2023. Effects of large particles on the transport characteristics of slurries in horizontal pipes. Particulate Science and Technology :41 (4):532–543:. doi: 10.1080/02726351.2022.2124209
  • Li, Y., W.-T. Wu, X. Liu, and M. Massoudi. 2019. The effects of particle concentration and various fluxes on the flow of a fluid-solid suspension. Applied Mathematics and Computation 358:151–60. doi: 10.1016/j.amc.2019.04.017.
  • Ma, S., Z. Wei, and X. Chen. 2018. CFD-DEM combined the fictitious domain method with Monte Carlo method for studying particle sediment in fluid. Particulate Science and Technology 36 (8):920–33. doi: 10.1080/02726351.2017.1328472.
  • Maury, B. 2006. A time-stepping scheme for inelastic collisions. Numerische Mathematik 102 (4):649–79. doi: 10.1007/s00211-005-0666-6.
  • Niu, X. D., C. Shu, Y. T. Chew, and Y. Peng. 2006. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Physics Letters A 354 (3):173–82. doi: 10.1016/j.physleta.2006.01.060.
  • Pironneau, O., J. Liou, and T. Tezduyar. 1992. Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. Computer Methods in Applied Mechanics and Engineering 100 (1):117–41. doi: 10.1016/0045-7825(92)90116-2.
  • Salah, Z., A. A. Ait, D. Hassane, M. Kamal, and K. Sofiane. 2018. Motion of a solid particle in a water flow inside a pipe. Exergy for A Better Environment and Improved Sustainability 1:217–31.
  • Sun, R., and H. Xiao. 2016. CFD–DEM simulations of current-induced dune formation and morphological evolution. Advances in Water Resources 92:228–39. doi: 10.1016/j.advwatres.2016.03.018.
  • Tryggvason, G. 2010. Virtual motion of real particles. Journal of Fluid Mechanics 650:1–4. doi: 10.1017/S0022112010000765.
  • Vowinckel, B., T. Kempe, J. Fröhlich, and V. I. Nikora. 2012. Numerical simulation of sediment transport in open channel flow. River Flow 1:507–514.
  • Wan, D., and S. Turek. 2006. Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. International Journal for Numerical Methods in Fluids 51 (5):531–66. doi: 10.1002/fld.1129.
  • Wang, L., Z. L. Guo, and J. C. Mi. 2014. Drafting, kissing and tumbling process of two particles with different sizes. Computers & Fluids 96:20–34. doi: 10.1016/j.compfluid.2014.03.005.
  • Wu, J., and C. Shu. 2010. Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme. Communications in Computational Physics 7 (4):793–812. doi: 10.4208/cicp.2009.09.054.
  • Zhou, M., S. Wang, S. Kuang, K. Luo, J. Fan, and A. Yu. 2019. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technology 354:893–905. doi: 10.1016/j.powtec.2019.07.015.
  • Zhu, G., Y. Zhao, Z. Wang, M.-S.-U. Khalid, and M. Liu. 2022. Semi-resolved CFD-DEM simulation of fine particle migration with heat transfer in heterogeneous porous media. International Journal of Heat and Mass Transfer 197:123349. doi: 10.1016/j.ijheatmasstransfer.2022.123349.
  • Zhu, H., Z. Zhou, R. Yang, and A. Yu. 2007. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science 62 (13):3378–96. doi: 10.1016/j.ces.2006.12.089.
  • Zouaoui, S., H. Djebouri, A. Bilek, and K. Mohammedi. 2017. Modelling and simulation of solid particle sedimentation in an incompressible Newtonian fluid. Mathematics in Computer Science 11 (3–4):527–39. doi: 10.1007/s11786-017-0315-3.
  • Zouaoui, S., H. Djebouri, B. Ferhat, and K. Mohammedi. 2021. Towards numerical simulation tool of motion solid particles in fluid flow. The International Journal of Multiphysics 15 (3):311–24.
  • Zouaoui, S., H. Djebouri, K. Mohammedi, S. Khelladi, and A. A. Ait. 2016. Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe. Chinese Journal of Chemical Engineering 24 (2):317–22. doi: 10.1016/j.cjche.2015.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.