95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Coarse particle-laden flows and energy dissipation in inclined hydraulic conveying pipes

, , , , &

References

  • Alajbegovic, A., A. Assad, F. Bonetto, and R. T. Lahey. Jr, 1994. Phase distribution and turbulence structure for solid/fluid upflow in a pipe. International Journal of Multiphase Flow 20 (3):453–79. doi: 10.1016/0301-9322(94)90021-3.
  • Asim, T., and R. Mishra. 2016. Optimal design of hydraulic capsule pipelines transporting spherical capsules. The Canadian Journal of Chemical Engineering 94 (5):966–79. doi: 10.1002/cjce.22450.
  • Chemloul, N. S., and O. Benrabah. 2008. Measurement of velocities in two-phase flow by laser velocimetry: Interaction between solid particles’ motion and turbulence. Journal of Fluids Engineering 130 (7):0713011–07130110. doi: 10.1115/1.2948358.
  • Chung, J. S., G. Yarim, and H. Savasci. 1998. Shape effect of solids on pressure drop in a 2-phase vertically upward transport: Silica sands and spherical beads. ISOPE International Ocean and Polar Engineering Conference. Montreal, Canada: ISOPE: ISOPE-I-98-011.: ISOPE.
  • Chung, J. S., K. Lee, A. Tischler, and G. Yarim. 2001. Effect of particle size and concentration on pressure gradient in two-phase vertically upward transport. ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: ISOPE: ISOPE-M-01-022.
  • Crowe, C. T., M. Sommerfeld, and Y. Tsuji. 1998. Multiphase flows with droplets and particles. CRC Press, Taylor and Francis Group .
  • Doron, P., and D. Barnea. 1995. Pressure drop and limit deposit velocity for solid-liquid flow in pipes. Chemical Engineering Science 50 (10):1595–604. doi: 10.1016/0009-2509(95)00024-Y.
  • Duarte, C. A. R., F. J. de Souza, R. d V. Salvo, and V. F. dos Santos. 2017. The role of inter-particle collisions on elbow erosion. International Journal of Multiphase Flow 89:1–22. doi: 10.1016/j.ijmultiphaseflow.2016.10.001.
  • Felice, R. D. 1994. The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow 20 (1):153–9.
  • Gosman, A. D., and E. Loannides. 1983. Aspects of computer simulation of liquid-fueled combuster. Journal of Energy 7 (6):482–90. doi: 10.2514/3.62687.
  • Ji, L. L., W. Li, W. D. Shi, H. Chang, and Z. Y. Yang. 2020. Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis. Energy 199 (C):117447. doi: 10.1016/j.energy.2020.117447.
  • Kuang, S. B., R. P. Zou, R. H. Pan, and A. B. Yu. 2012. Gas-solid flow and energy dissipation in inclined pneumatic conveying. Industrial & Engineering Chemistry Research 51 (43):14289–302. doi: 10.1021/ie301894d.
  • Li, D. Y., H. J. Wang, Y. L. Qin, L. Han, X. Z. Wei, and D. Q. Qin. 2017. Entropy production analysis of hysteresis characteristic of a pump-turbine model. Energy Conversion and Management 149 (17):175–91. doi: 10.1016/j.enconman.2017.07.024.
  • Loth, E., and A. J. Dorgan. 2009. An equation of motion for particles of finite Reynolds number and size. Environmental Fluid Mechanics 9 (2):187–206. doi: 10.1007/s10652-009-9123-x.
  • Ma, H. Q., L. Y. Zhou, Z. H. Liu, M. Y. Chen, X. H. Xia, and Y. Z. Zhao. 2022. A review of recent development for the CFD-DEM investigations of non-spherical particles. Powder Technology 412:117972. doi: 10.1016/j.powtec.2022.117972.
  • Matousek, V. 2002. Pressure drops and flow patterns in sand-mixture pipes. Experimental Thermal and Fluid Science 26 (6–7):693–702. doi: 10.1016/S0894-1777(02)00176-0.
  • Mei, R. 1992. An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. International Journal of Multiphase Flow 18 (1):145–7. doi: 10.1016/0301-9322(92)90012-6.
  • Miedema, S. A., and R. C. Ramsdell. 2015. The limit deposit velocity model, a new approach. Journal of Hydrology and Hydromechanics 63 (4):273–86. doi: 10.1515/johh-2015-0034.
  • Mindlin, R. D., and H. Deresiewicz. 1953. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics 20 (3):327–44. doi: 10.1115/1.4010702.
  • Oesterlé, B., and T. B. Dinh. 1998. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Experiments in Fluids 25 (1):16–22. doi: 10.1007/s003480050203.
  • Ren, L. B., X. Q. Zhao, and S. F. Zhang. 2017. Hydrodynamic investigation of slurry flows in horizontal narrow rectangular channels. International Journal of Heat and Technology 35 (4):730–6. doi: 10.18280/ijht.350406.
  • Saffman, P. G. 1965. The lift on small sphere in slow shear flow. Journal of Fluid Mechanics 22 (2):385–400. doi: 10.1017/S0022112065000824.
  • Silva, R., F. A. Garcia, P. M. Faia, and M. G. Rasteiro. 2015. Settling suspensions flow modelling: A review. KONA Powder and Particle Journal 32 (0):41–56. doi: 10.14356/kona.2015009.
  • Solnordal, C. B., C. Y. Wong, and J. Boulanger. 2015. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow. Wear 336–337:43–57. doi: 10.1016/j.wear.2015.04.017.
  • Tsuji, Y., T. Tanaka, and T. Ishida. 1992. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology 71 (3):239–50. doi: 10.1016/0032-5910(92)88030-L.
  • Uzi, A., and A. Levy. 2018. Flow characteristics of coarse particles in horizontal hydraulic conveying. Powder Technology 326:302–21. doi: 10.1016/j.powtec.2017.11.067.
  • Vlasak, P., Z. Chara, J. Konfrst, J. Sobota, and B. Kysela. 2013. Conveying of coarse-grained particles in pipes. ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: ISOPE: ISOPE-M-13-030.
  • Vlasak, P., Z. Chara, J. Konfrst, and J. Krupicka. 2014. Effect of concentration and velocity on conveying of coarse grained mixtures in pipe. ISOPE International Ocean and Polar Engineering Conference. Busan, Korea: ISOPE: ISOPE-I-14-136.
  • Vlasák, P., Z. Chára, J. Krupička, and J. Konfršt. 2014. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. Journal of Hydrology and Hydromechanics 62 (3):241–7. doi: 10.2478/johh-2014-0022.
  • Winter, H. H. 1987. Viscous dissipation term in energy equation. In Calculation and measurement techniques for momentum, energy and mass transfer, ed. R. J. Gordon. New York: American Institute of Chemical Engineers.
  • Xiong, T., X. Z. Zhang, S. A. Miedema, and X. H. Chen. 2019. Study of the characteristics of the flow regimes and dynamics of coarse particles in pipeline transportation. Powder Technology 347:148–58. doi: 10.1016/j.powtec.2019.02.031.
  • Yoon, C. H., I. K. Kim, S. K. Kwon, and W. S. Chi. 1999. An experimental study on the flow characteristics of solid-liquid two-phase mixture in a vertical tube. ISOPE Ocean Mining and Gas Hydrates Symposium. Goa, India: ISOPE: ISOPE-M-99-007.
  • Yoon, C. H., D. K. Lee, Y. C. Park, and S. K. Kwon. 2005. On-land hydraulic pumping experiments of 30-meter height scale. ISOPE International Ocean and Polar Engineering Conference. South Korea: ISOPE: ISOPE-I-05-065.
  • Yoon, C. H., D. K. Lee, Y. C. Park, and S. K. Kwon. 2004. Design and test of hydraulic pumping system with 30m height scale. ISOPE International Ocean and Polar Engineering Conference. Toulon, France: ISOPE, 2004: ISOPE-I-04-059.
  • Zhao, H. M., and Y. Z. Zhao. 2019. CFD-DEM simulation of pneumatic conveying in a horizontal channel. International Journal of Multiphase Flow 118:64–74. doi: 10.1016/j.ijmultiphaseflow.2019.06.003.
  • Zhao, R. J., Y. Zhou, D. S. Zhang, and X. F. Gao. 2022. Numerical investigation of the hydraulic transport of coarse particles in a vertical pipe based on a fully-coupled numerical model. International Journal of Multiphase Flow 155:104094. doi: 10.1016/j.ijmultiphaseflow.2022.104094.
  • Zhou, M. M., S. Wang, S. B. Kuang, K. Luo, J. R. Fan, and A. B. Yu. 2019. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technology 354:893–905. doi: 10.1016/j.powtec.2019.07.015.
  • Zhou, M. M., S. B. Kuang, F. Xiao, K. Luo, and A. B. Yu. 2021. CFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regime. Powder Technology 392:619–31. doi: 10.1016/j.powtec.2021.07.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.