110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel green approach for Cr(VI) removal: application of tomato stem-based hydrochar assisted Fenton-like process

, , , , , ORCID Icon & show all
Pages 305-321 | Received 24 Sep 2023, Accepted 09 Jan 2024, Published online: 22 Jan 2024

References

  • Zeng Q, Hu Y, Yang Y, et al. Cell envelop is the key site for Cr (VI) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr (VI) reducing bacterium. J Hazard Mater. 2019;368:149–155. doi:10.1016/j.jhazmat.2019.01.031
  • Xu Z, Xu X, Zhang Y, et al. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr (VI) reduction. J Hazard Mater. 2020;388:121794. doi:10.1016/j.jhazmat.2019.121794
  • Abd El-Rahman SS, Ashwish NM, Ali ME. Appraisal of the pre-emptive effect of lactoferrin against chromium-induced testicular toxicity in male rats. Biol Trace Elem Res. 2023: 1–14. doi:10.1007/s12011-023-03605-3
  • Georgaki MN, Charalambous M, Kazakis N, et al. Chromium in water and carcinogenic human health risk. Environments. 2023;10(2):33. doi:10.3390/environments10020033
  • Kabir MM, Akter MM, Khandaker S, et al. Highly effective agro-waste based functional green adsorbents for toxic chromium (VI) ion removal from wastewater. J Mol Liq. 2022;347:118327. doi:10.1016/j.molliq.2021.118327
  • Salman MS, Hasan MN, Hasan MM, et al. Improving copper (II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct. 2023;1282:135259. doi:10.1016/j.molstruc.2023.135259
  • Kabir MM, Mouna SSP, Akter S, et al. Tea waste based natural adsorbent for toxic pollutant removal from waste samples. J Mol Liq. 2021;322:115012. doi:10.1016/j.molliq.2020.115012
  • Kubra KT, Hasan MM, Hasan MN, et al. The heavy lanthanide of Thulium (III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf, A. 2023;667:131415. doi:10.1016/j.colsurfa.2023.131415
  • Awual MR, Islam A, Hasan MM, et al. Introducing an alternate conjugated material for enhanced lead (II) capturing from wastewater. J Cleaner Prod. 2019;224:920–929. doi:10.1016/j.jclepro.2019.03.241
  • Dos Reis GS, Schnorr CE, Dotto GL, et al. Wood waste-based functionalized natural hydrochar for the effective removal of Ce (III) ions from aqueous solution. Environ Sci Pollut Res. 2023: 1–11. doi:10.1007/s11356-023-26921-6
  • Kabir MM, Ferdousi S, Rahman MM, et al. Chromium (VI) removal efficacy from aqueous solution by modified tea wastes-polyvinyl alcohol (TW-PVA) composite adsorbent. Desalin Water Treat. 2019;174:311–323. doi:10.5004/dwt.2020.24854
  • Kabir MM, Mouna SSP, Akter S, et al. Tea waste based natural adsorbent for toxic pollutant removal from waste samples. J Mol Liq. 2021;322:115012. doi:10.1016/j.molliq.2020.115012
  • Sultana F, Uddin MK, Kabir MM, et al. Removal efficiency of chromium (VI) ions from aqueous solution by adsorption of rice husk and saw dust ash as a homogeneous composite. Int J Environ Sci. 2016;6(6):987–994. doi:10.6088/ijes.6093
  • Zhu Y, Fan W, Zhou T, et al. Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Sci Total Environ. 2019;678:253–266. doi:10.1016/j.scitotenv.2019.04.416
  • Ai J, Zhang W, Liao G, et al. A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts: catalytic performance assessment and micro-interfacial mechanisms. Water Res. 2019;150:473–487. doi:10.1016/j.watres.2018.11.085
  • Wang C, Huang R, Sun R. Green one-spot synthesis of hydrochar supported zero-valent iron for heterogeneous Fenton-like discoloration of dyes at neutral pH. J Mol Liq. 2020;320:114421. doi:10.1016/j.molliq.2020.114421
  • Pan X, Gu Z, Chen W, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Sci Total Environ. 2021;754:142104. doi:10.1016/j.scitotenv.2020.142104
  • Zuo S, Jin X, Wang X, et al. Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Appl Catal, B. 2021;282:119551. doi:10.1016/j.apcatb.2020.119551
  • Izghri Z, Enaime G, Louarrat M, et al. Novel catalyst from two-phase olive mill wastes using hydrothermal carbonisation for the removal of methylene blue by heterogeneous Fenton-like oxidation. Int J Environ Anal Chem. 2020;100(8):854–872. doi:10.1080/03067319.2019.1643461
  • Jiang B, Gong Y, Gao J, et al. The reduction of Cr (VI) to Cr (III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J Hazard Mater. 2019;365:205–226. doi:10.1016/j.jhazmat.2018.10.070
  • Yelmen B, Şahin HH, Cakir MT, et al. Energy efficiency and economic analysis in tomato production: a case study of Mersin province in the Mediterranean region. Appl Ecol Environ Res. 2019;17(4):7371–7379. doi:10.15666/aeer/1704_73717379
  • Yabalak E. Degradation of ticarcillin by subcritical water oxidation method: application of response surface methodology and artificial neural network modeling. J Environ Sci Health, Part A. 2018;53(11):975–985. doi:10.1080/10934529.2018.1471023
  • Lace A, Ryan D, Bowkett M, et al. Chromium monitoring in water by colorimetry using optimised 1, 5-diphenylcarbazide method. Int J Environ Res Public Health. 2019;16(10):1803. doi:10.3390/ijerph16101803
  • Bilici Z, Işık Z, Aktaş Y, et al. Photocatalytic effect of zinc oxide and magnetite entrapped calcium alginate beads for azo dye and hexavalent chromium removal from solutions. J Water Process Eng. 2019;31:100826. doi:10.1016/j.jwpe.2019.100826
  • Saleh M, Isik Z, Yabalak E, et al. Green production of hydrochar nut group from waste materials in subcritical water medium and investigation of their adsorption performance for crystal violet. Water Environ Res. 2021;93(12):3075–3089. doi:10.1002/wer.1659
  • Karthikeyan S, Ezhil Priya M, Boopathy R, et al. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies. Environ Sci Pollut Res. 2012;19:1828–1840. doi:10.1007/s11356-011-0691-1
  • Alterkaoui A, Eskikaya O, Gun M, et al. Production of waste tomato stem hydrochar (TS-HC) in subcritical water medium and application in real textile wastewater using photocatalytic treatment system. Int J Environ Res. 2022;16(6):110. doi:10.1007/s41742-022-00483-w
  • Habte L, Shiferaw N, Mulatu D, et al. Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability. 2019;11(11):3196. doi:10.3390/su11113196
  • Eskikaya O, Isik Z, Arslantas C, et al. Preparation of hydrochar bio-based catalyst for fenton process in dye-containing wastewater treatment. Environ Res. 2023;216:114357. doi:10.1016/j.envres.2022.114357
  • Liu G, Zhang Y, Yu H, et al. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar. J Hazard Mater. 2020;397:122783. doi:10.1016/j.jhazmat.2020.122783
  • Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol. 2016;36(1):1–84. doi:10.1080/10643380500326564
  • Ma B, Yao J, Knudsen TŠ, et al. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr (VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. J Hazard Mater. 2022;424:126698. doi:10.1016/j.jhazmat.2021.126698
  • Li W, Yang S, Wang W, et al. Simultaneous removal of Cr (VI) and acid orange 7 from water in pyrite-persulfate system. Environ Res. 2020;189:109876. doi:10.1016/j.envres.2020.109876
  • Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects. J Hazard Mater. 2021;404:124191. doi:10.1016/j.jhazmat.2020.124191
  • Guo S, Yang W, You L, et al. Simultaneous reduction of Cr (VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes. Chem Eng J. 2020;393:124758. doi:10.1016/j.cej.2020.124758
  • Pandey NK, Li HB, Chudal L, et al. Exploration of copper-cysteamine nanoparticles as an efficient heterogeneous Fenton-like catalyst for wastewater treatment. Mater Today Phys. 2022;22:100587. doi:10.1016/j.mtphys.2021.100587
  • Hussain S, Aneggi E, Trovarelli A, et al. Removal of organics from landfill leachate by heterogeneous fenton-like oxidation over copper-based catalyst. Catalysts. 2022;12(3):338. doi:10.3390/catal12030338
  • Ding RR, Li WQ, He CS, et al. Oxygen vacancy on hollow sphere CuFe2O4 as an efficient Fenton-like catalysis for organic pollutant degradation over a wide pH range. Appl Catal, B. 2021;291:120069. doi:10.1016/j.apcatb.2021.120069
  • Kalita J, Das B, Dhar SS. Synergistic effect of iron and copper in hydroxyapatite nanorods for Fenton-like oxidation of organic dye. Colloids Surf, A. 2022;643:128750. doi:10.1016/j.colsurfa.2022.128750
  • Guo B, Xu T, Zhang L, et al. A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A: performance, kinetics and transformation mechanism. J Environ Manag. 2020;272:111047. doi:10.1016/j.jenvman.2020.111047
  • Diao ZH, Qian W, Zhang ZW, et al. Removals of Cr (VI) and Cd (II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: coexisting effect, products and mechanism. Chem Eng J. 2020;397:125382. doi:10.1016/j.cej.2020.125382
  • Li F, Zimmerman AR, Hu X, et al. Removal of aqueous Cr (VI) by Zn-and Al-modified hydrochar. Chemosphere. 2020;260:127610. doi:10.1016/j.chemosphere.2020.127610
  • Saleh M, Yalvac M, Arslan H, et al. Investigation of basalt properties as heterogeneous catalyst for Fenton oxidation of textile wastewater. Clean-Soil, Air, Water. 2022;50(1):2000432. doi:10.1002/clen.202000432
  • Ergüt M, Uzunoğlu D, Özer A. Efficient decolourization of malachite green with biosynthesized iron oxide nanoparticles loaded carbonated hydroxyapatite as a reusable heterogeneous Fenton-like catalyst. J Environ Sci Health, Part A. 2019;54(8):786–800. doi:10.1080/10934529.2019.1596698
  • Xia Q, Zhang D, Yao Z, et al. Revealing the enhancing mechanisms of Fe-Cu bimetallic catalysts for the Fenton-like degradation of phenol. Chemosphere. 2022;289:133195. doi:10.1016/j.chemosphere.2021.133195
  • Wang N, Jin L, Li C, et al. Preparation of coal fly ash-based Fenton-like catalyst and its application for the treatment of organic wastewater under microwave assistance. J Cleaner Prod. 2022;342:130926. doi:10.1016/j.jclepro.2022.130926
  • Dong X, Ma LQ, Gress J, et al. Enhanced Cr (VI) reduction and As (III) oxidation in ice phase: important role of dissolved organic matter from biochar. J Hazard Mater. 2014;267:62–70. doi:10.1016/j.jhazmat.2013.12.027
  • Lu K, Gao M, Sun B, et al. Simultaneous removal of Cr and organic matters via coupling Cr-Fenton-like reaction with Cr flocculation: the key role of Cr flocs on coupling effect. Chemosphere. 2022;287:131991. doi:10.1016/j.chemosphere.2021.131991
  • Wang H, Zhao Y, Su Y, et al. Fenton-like degradation of 2, 4-dichlorophenol using calcium peroxide particles: performance and mechanisms. RSC Adv. 2017;7(8):4563–4571. doi:10.1039/C6RA26754H
  • Huang B, Qi C, Yang Z, et al. Pd/Fe3O4 nanocatalysts for highly effective and simultaneous removal of humic acids and Cr (VI) by electro-Fenton with H2O2 in situ electro-generated on the catalyst surface. J Catal. 2017;352:337–350. doi:10.1016/j.jcat.2017.06.004
  • Salama AM, Abedin RMA, Elwakeel KZ. Influences of greenly synthesized iron oxide nanoparticles on the bioremediation of dairy effluent using selected microbial isolates. Int J Environ Sci Technol. 2021: 1–12. doi:10.1007/s13762-021-03625-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.