674
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Accumulation of aluminium and arsenic in Cenococcum geophilum sclerotia from forest soil affected by mining smoke

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 276-291 | Received 10 Sep 2023, Accepted 18 Jan 2024, Published online: 24 Jan 2024

References

  • LoBuglio KF, Berbee ML, Taylor JW. Phylogenetic origins of the asexual mycorrhizal Symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes. Mol Phylogenet Evol. 1996;6:287–294. doi:10.1006/mpev.1996.0077
  • LoBuglio KF. Cenococcum. In: Cairney JWG, John WG, Chambers SM, editor. Ectomycorrhizal fungi key genera in profile. Berlin.: Springer; 1999. p. 287–309.
  • Meier S, Robarge WP, Bruck RI, et al. Effects of simulated rain acidity on ectomycorrhizae of red spruce seedlings potted in natural soil. Environ Pollut. 1989;59:315–324. doi:10.1016/0269-7491(89)90158-9
  • Matsuda Y, Hayakawa N, Ito S. Local and microscale distributions of Cenococcum geophilum in soils of coastal pine forests. Fungal Ecol. 2009;2:31–35. doi:10.1016/j.funeco.2008.10.002
  • Fernandez CW, Koide RT. The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol. 2013;6:479–486. doi:10.1016/j.funeco.2013.08.004
  • Trappe JM. Cenococcum graniforme–its distribution, ecology, mycorrhiza formation, and inherent variation [dissertation]. Washington: University of Washington; 1962.
  • Trappe JM. Mycorrhizal host and distribution of Cenococcum graniforme. Lloydia. 1964;27:100–106.
  • Willetts HJ. Survival of fungal sclerotia under adverse environmental conditions. Biol Rev Biol Proc Camb Philos Soc. 1971;46(3):387–407. doi:10.1111/j.1469-185X.1971.tb01050.x
  • Massicotte HB, Trappe JM, Peterson RL, et al. Studies on Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot. 1992;70:125–132. doi:10.1139/b92-017
  • Douhan GW, Huryn KL, Douhan LI. Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex. Mycologia. 2007;99:812–819. doi:10.1080/15572536.2007.11832513
  • Krpata D, Peintner U, Langer I, et al. Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res. 2008;112:1069–1079. doi:10.1016/j.mycres.2008.02.004
  • Thompson GW, Medve RJ. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi. Appl Environ Microbiol. 1984;48:556–560. doi:10.1128/aem.48.3.556-560.1984
  • Watanabe M, Inoue Y, Sakagami N, et al. Characterization of major and trace elements in sclerotium grains. Eur J Soil Sci. 2007;58:786–793. doi:10.1111/j.1365-2389.2006.00868.x
  • Nyamsanjaa K, Watanabe M, Sakagami N, et al. Metal accumulation in sclerotium grains collected from low pH forest soils. J Environ Sci Health Part A. 2021;56(3):303–309. doi:10.1080/10934529.2021.1872316
  • Byrne AR, Slejkovec Z, Stijve T, et al. Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem. 1995;9:305–313. doi:10.1002/aoc.590090403
  • Larsen EH, Hansen M, Goessler W. Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Appl Organomet Chem. 1998;12:285–291. doi:10.1002/(SICI)1099-0739(199804)12:4<285::AID-AOC706>3.0.CO;2-#
  • Slejkovec M, Goessler W, Irgolic KJ. Inorganic and organic arsenic compounds in Slovenian mushrooms: Comparison of arsenic-specific detectors for liquid chromatography. Chem Speciat Bioavailab. 1999;11:115–123. doi:10.3184/095422999782775618
  • Koch I, Dee J, House K, et al. Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. Sci Total Environ. 2013;449:1–8. doi:10.1016/j.scitotenv.2013.01.047
  • Braeuer S, Borovička J, Goessler W. A unique arsenic speciation profile in Elaphomyces spp. (“deer truffles”) —trimethylarsine oxide and methylarsonous acid as significant arsenic compounds. Anal Bioanal Chem. 2018;410:2283–2290. doi:10.1007/s00216-018-0903-3
  • Borovicka J, Braeuer S, Sacký J, et al. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites, Sci. Total Environ. 2019;648:1570–1581. doi:10.1016/j.scitotenv.2018.08.202
  • Khullar S, Reddy MS. Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis. Chemosphere. 2020;240:124914. doi:10.1016/j.chemosphere.2019.124914
  • Tam PCF. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza. 1995;5:181–187. doi:10.1007/BF00203335
  • Dauphin B, Pereira MF, Kohler A, et al. Cryptic genetic structure and copy-number variation in the ubiquitous forest symbiotic fungus Cenococcum geophilum. Environ Microbiol. 2021;23:6536–6556. doi:10.1111/1462-2920.15752
  • Shi Y, Yan T, Yuan C, et al. Comparative physiological and transcriptome analysis provide insights into the response of Cenococcum geophilum, an ectomycorrhizal fungus to cadmium stress. J Fungi (Basel). 2022;8(7):724. doi:10.3390/jof8070724
  • Cripps CL. Native mycorrhizal fungi with aspen on smelter- impacted sites in the Northern Rocky Mountains: occurrence and potential use in reclamation. Conference proceedings, national meeting of the American society of mining and reclamation, 3–6 June 2003, Lexington, KY.
  • Chen SH, Tibbett M. Phosphate supply and arsenate toxicity in ectomycorrhizal fungi. J Basic Microbiol. 2007;47:358–362. doi:10.1002/jobm.200710320
  • Diacomanolis V, Noller BN, Taga R, et al. Relationship of arsenic speciation and bioavailability in mine wastes for human health risk assessment. Environ Chem. 2015;13(4):641–655. doi:10.1071/EN14152
  • Nygren H, Dahlen G, Malmberg P. Analysis of As- and Hg-species in metal-resistant oral bacteria, by imaging ToF-SIMS. Basic Clin Pharmacol Toxicol. 2014;115:129–133. doi:10.1111/bcpt.12205
  • Sugai M, The development process of mining pollution at the Ashio copper mine. (Working paper of United Nations University); 1983;1–41.
  • Asami T. Soil pollution by metals from mining and smelting activities. In: Salomons W, Forstner U, editor. Chemistry and biology of solid waste. Berlin: Springer; 1988. p. 143–169.
  • Shoji K, Sugai M. The Ashio Copper mine pollution case: The origins of environmental destruction. In: Ui J, editor. Industrial pollution in Japan. Tokyo: United Nations University; 1992. p. 18–63.
  • Kataoka C, Ikushima T, Kashiwada S. Heavy metals in Lake Yanaka, Japan, an artificial retarding basin established for remediation of heavy metals contamination in the Watarase River. J.Trace Elem Minerals. 2022;2:100006. doi:10.1016/j.jtemin.2022.100006
  • Stuiver M, Polach HA. Discussion: Reporting of 14C data. Radiocarbon. 1977;19(3):355–363. doi:10.1017/S0033822200003672
  • Hua Q, Barbetti M, Rakowski AZ. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon. 2013;55(4):2059–2072. doi:10.2458/azu_js_rc.v55i2.16177
  • Reimer PJ, Austin WEN, Bard E, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon. 2020;62(4):725–757. doi:10.1017/RDC.2020.41
  • Ramsey CB. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51(1):337–360. doi:10.1017/S0033822200033865
  • Vickerman JC, Briggs D. TOF-SIMS: surface analysis by mass spectrometry. West Sussex: IM Publications and Surface Spectra Limited; 2001.
  • Watanabe M, Genseki A. Micromorphological features of sclerotia grains. In: Watanabe M, editor. Sclerotia grains in soils. Progress in soil science. Singapore: Springer; 2021. p. 139–151.
  • Ray P, Adholeya A. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro. Biometals. 2009;22:275–281. doi:10.1007/s10534-008-9163-6
  • Gu X, Li J, Wang X, et al. Laccaria bicolor mobilizes both labile aluminum and inorganic phosphate in rhizosphere soil of Pinus massoniana seedlings field grown in a Yellow Acidic Soil. Appl Environ Microbiol. 2020;86(8):e03015–19.
  • Wang M, Yuan L, Zhou Z, et al. Efflux of oxalate and uptake of nitrogen, phosphorus and potassium by ectomycorrhizal fungal isolates in vitro in response to aluminum stress. Sci Silvae Sin. 2012;48:82–88.
  • Zhang L, Wang M, Li H, et al. Mobilization of inorganic phosphorus from soils by ectomycorrhizal fungi. Pedosphere. 2014;24:683–689. doi:10.1016/S1002-0160(14)60054-0
  • Wu J, Liang J, Björn LO, et al. Phosphorus-arsenic interaction in the ‘soil-plant-microbe’ system and its influence on arsenic pollution. Sci Total Environ. 2022;802:149796. doi:10.1016/j.scitotenv.2021.149796
  • Kushwaha AS, Thakur RS, Patel DK, et al. Impact of arsenic on phosphate solubilization, acquisition and poly-phosphate accumulation in endophytic fungus Serendipita indica. Microbiol Res. 2022;259:127014. doi:10.1016/j.micres.2022.127014
  • Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi. Environ Pollut. 2015;197:108–115. doi:10.1016/j.envpol.2014.12.006
  • Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the reproductive life stage of Agaricus bisporus and Agaricus campestris. J Environ Sci. 2016;49:140–149. doi:10.1016/j.jes.2016.06.021
  • Slejkovec Z, Byrne AR, Goessler W, et al. Methylation of arsenic in Pleurotus sp. and Agaricus placomyces. Acta Chim Slov. 1996;43:269–283.
  • Mass MJ, Tennant A, Roop BC, et al. Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol. 2001;14:355–361. doi:10.1021/tx000251l
  • Panda SK, Baluska F, Matsumoto H. Aluminum stress signaling in plants. Plant Signal Behav. 2009;4(7):592–597.