313
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Meta-Analysis of Functional Neuroimaging Studies of Ketamine Administration in Healthy Volunteers

, MSc, , PhD, , MD, PhD & , PhD
Pages 211-224 | Received 27 Sep 2022, Accepted 22 Feb 2023, Published online: 15 Mar 2023

References

  • Abdallah, C. G., K.H. Ahn, L. A. Averill, S. Nemati, C. L. Averill, S. Fouda, M. Ranganathan, P. T. Morgan, D. C. D’souza, D. H. Mathalon, et al. 2021. A robust and reproducible connectome fingerprint of ketamine is highly associated with the connectomic signature of antidepressants. Neuropsychopharmacology. 46(2):478–85. doi:10.1038/s41386-020-00864-9.
  • Abel, K. M., M. P. G. Allin, K. Kucharska-Pietura, A. David, C. Andrew, S. Williams, M. J. Brammer, and M. L. Phillips. 2003 March. Ketamine alters neural processing of facial emotion recognition in healthy men: An FMRI study. NeuroReport 387–91. doi:10.1097/00001756-200303030-00018.
  • Albajes-Eizagirre, A., A. Solanes, E. Vieta, and J. Radua. 2019. Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM. NeuroImage 186 (February):174–84. doi:10.1016/j.neuroimage.2018.10.077.
  • Alexander, L., L. A. Jelen, M. A. Mehta, and A. H. Young. 2021. The anterior cingulate cortex as a key locus of ketamine’s antidepressant action. Neuroscience & Biobehavioral Reviews 127 (August):531–54. doi:10.1016/j.neubiorev.2021.05.003.
  • Anders, E., T. E. Nichols, and H. Knutsson. 2016. Cluster failure: Why FMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences 113 (28):7900–05. doi:10.1073/pnas.1602413113.
  • Andrade, C. 2017. Ketamine for depression, 4: In what dose, at what rate, by what route, for how long, and at what frequency? The Journal of Clinical Psychiatry 78 (7):e852–57. doi:10.4088/JCP.17f11738.
  • Anticevic, A., M. Gancsos, J. D. Murray, G. Repovs, N. R. Driesen, D. J. Ennis, M. J. Niciu, P. T. Morgan, T. S. Surti, M. H. Bloch, et al. 2012. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proceedings of the National Academy of Sciences. 109(41):16720–25. doi:10.1073/pnas.1208494109.
  • Ballard, E. D., and C. A. Zarate. 2020. The role of dissociation in ketamine’s antidepressant effects. Nature Communications 11 (1):6431. doi:10.1038/s41467-020-20190-4.
  • Becker, B., M. Steffens, Z. Zhao, K. M. Kendrick, C. Neumann, B. Weber, J. Schultz, M. A. Mehta, U. Ettinger, and R. Hurlemann. 2017. General and emotion-specific neural effects of ketamine during emotional memory formation. NeuroImage 150 (April):308–17. doi:10.1016/j.neuroimage.2017.02.049.
  • Beck, K., G. Hindley, F. Borgan, C. Ginestet, R. McCutcheon, S. Brugger, N. Driesen, M. Ranganathan, D. D'Souza, M. Taylor, et al. 2020. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: A systematic review and meta-analysis. JAMA Network Open 3 (5):e204693. doi:10.1001/jamanetworkopen.2020.4693.
  • Benoit, R. G., and D. L. Schacter. 2015. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75 (August):450–57. doi:10.1016/j.neuropsychologia.2015.06.034.
  • Bernard, J. A., and R. D. Seidler. 2013. Cerebellar contributions to visuomotor adaptation and motor sequence learning: An ALE meta-analysis. Frontiers in Human Neuroscience 7:7. doi:10.3389/fnhum.2013.00027.
  • Bolton, T. A. W., D. Wotruba, R. Buechler, A. Theodoridou, L. Michels, S. Kollias, W. Rössler, K. Heekeren, and D. Van De Ville. 2020. Triple network model dynamically revisited: Lower salience network state switching in pre-psychosis. Frontiers in Physiology 11 (February):66. doi:10.3389/fphys.2020.00066.
  • Bonnelle, V., T. E. Ham, R. Leech, K. M. Kinnunen, M. A. Mehta, R. J. Greenwood, and D. J. Sharp. 2012. Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences 109 (12):4690–95. doi:10.1073/pnas.1113455109.
  • Bora, E., A. Fornito, M. Yücel, and C. Pantelis. 2012. The effects of gender on grey matter abnormalities in major psychoses: A comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychological Medicine 42 (2):295–307. doi:10.1017/S0033291711001450.
  • Breier, A., A. K. Malhotra, D. A. Pinals, N. I. Weisenfeld, and D. Pickar. 1997. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. The American Journal of Psychiatry 154 (6):805–11. doi:10.1176/ajp.154.6.805.
  • Chen, X., S. Liang, P. Weidan, Y. Song, T. E. Mwansisya, Q. Yang, H. Liu, Z. Liu, B. Shan, and Z. Xue. 2015. Reduced cortical thickness in right heschl’s gyrus associated with auditory verbal hallucinations severity in first-episode schizophrenia. BMC Psychiatry 15 (1):152. doi:10.1186/s12888-015-0546-2.
  • Choudhury, D., A. E. Autry, K. F. Tolias, and V. Krishnan. 2021. Ketamine: Neuroprotective or neurotoxic? Frontiers in Neuroscience 15 (September):672526. doi:10.3389/fnins.2021.672526.
  • Corlett, P. R., G. D. Honey, M. R. F. Aitken, A. Dickinson, D. R. Shanks, A. R. Absalom, M. Lee, E. Pomarol-Clotet, G. K. Murray, P. J. McKenna, et al. 2006. Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: Linking cognition, brain activity, and psychosis. Archives of General Psychiatry. 63(6):611. doi:10.1001/archpsyc.63.6.611.
  • Ćurčić-Blake, B., J. M. Ford, D. Hubl, N. D. Orlov, I. E. Sommer, F. Waters, P. Allen, R. Jardri, P. W. Woodruff, O. David, et al. 2017. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Progress in Neurobiology. 148(January):1–20. doi:10.1016/j.pneurobio.2016.11.002.
  • Da Costa, S., W. van der Zwaag, J. P. Marques, R. S. J. Frackowiak, S. Clarke, and M. Saenz. 2011. Human primary auditory cortex follows the shape of heschl’s gyrus. Journal of Neuroscience 31 (40):14067–75. doi:10.1523/JNEUROSCI.2000-11.2011.
  • Dahlgren, K., C. Ferris, and S. Hamann. 2020. Neural correlates of successful emotional episodic encoding and retrieval: An SDM meta-analysis of neuroimaging studies. Neuropsychologia 143 (June):107495. doi:10.1016/j.neuropsychologia.2020.107495.
  • Daumann, J., K. Heekeren, A. Neukirch, C. M. Thiel, W. Möller-Hartmann, and E. Gouzoulis-Mayfrank. 2008. Pharmacological modulation of the neural basis underlying inhibition of return (IOR) in the human 5-HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology 200 (4):573–83. doi:10.1007/s00213-008-1237-1.
  • Daumann, J., D. Wagner, K. Heekeren, A. Neukirch, C. Thiel, and E. Gouzoulis-Mayfrank. 2010. Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis. Journal of Psychopharmacology 24 (10):1515–24. doi:10.1177/0269881109103227.
  • Deakin, J. F. Lees, S. William, J. Lees, S. McKie, E. C. H. Jaime, S. R. Williams, and M. D. Serdar. 2008. Glutamate and the neural basis of the subjective effects of ketamine: A pharmaco–magnetic resonance imaging study. Archives of General Psychiatry 65 (2):154. doi:10.1001/archgenpsychiatry.2007.37.
  • De Simoni, S., A. J. Schwarz, O. G. O’daly, A. F. Marquand, C. Brittain, C. Gonzales, S. Stephenson, S. C. R. Williams, and M. A. Mehta. 2013. Test–retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. NeuroImage 64 (January):75–90. doi:10.1016/j.neuroimage.2012.09.037.
  • Ebert, A., I. Sibylle Haussleiter, G. Juckel, M. Brüne, and P. Roser. 2012. Impaired facial emotion recognition in a ketamine model of psychosis. Psychiatry Research 200 (2–3):724–27. doi:10.1016/j.psychres.2012.06.034.
  • Egerton, A., A. A. Grace, J. Stone, M. G. Bossong, M. Sand, and P. McGuire. 2020. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophrenia Research 223 (September):59–70. doi:10.1016/j.schres.2020.09.013.
  • Egger, M., G. D. Smith, M. Schneider, and C. Minder. 1997. Bias in meta-analysis detected by a simple, graphical test. The BMJ 315 (7109):629–34. doi:10.1136/bmj.315.7109.629.
  • Ferrarelli, F. 2020. Ketamine, NMDA hypofunction, and sleep oscillatory abnormalities in schizophrenia. Schizophrenia Research 222 (August):1–2. doi:10.1016/j.schres.2020.06.009.
  • Fletcher, J. 2007. What is heterogeneity and is it important? The BMJ 334 (7584):94–96. doi:10.1136/bmj.39057.406644.68.
  • Francois, J., O. Grimm, A. J. Schwarz, J. Schweiger, L. Haller, C. Risterucci, A. Böhringer, Z. Zang, H. Tost, G. Gilmour, et al. 2016. Ketamine suppresses the ventral striatal response to reward anticipation: A cross-species translational neuroimaging study. Neuropsychopharmacology. 41(5):1386–94. doi:10.1038/npp.2015.291.
  • Fu, C. H. Y., K. M. Abel, M. P. G. Allin, D. Gasston, S. G. Costafreda, J. Suckling, S. C. R. Williams, and P. K. McGuire. 2005. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: A functional magnetic resonance imaging study. Psychopharmacology 183 (1):92–102. doi:10.1007/s00213-005-0154-9.
  • Gao, Z., W. Zhao, S. Liu, Z. Liu, C. Yang, and X. Yong. 2021. Facial emotion recognition in schizophrenia. Frontiers in Psychiatry 12 (May):633717. doi:10.3389/fpsyt.2021.633717.
  • Gärtner, M., A. Weigand, M. Scheidegger, M. Lehmann, P. O. Wyss, A. Wunder, A. Henning, and S. Grimm. 2022. Acute effects of ketamine on the pregenual anterior cingulate: linking spontaneous activation, functional connectivity, and glutamate metabolism. European Archives of Psychiatry and Clinical Neuroscience 272 (4):703–14. doi:10.1007/s00406-021-01377-2.
  • Gavrilescu, M., S. Rossell, G. W. Stuart, T. L. Shea, H. Innes-Brown, K. Henshall, C. McKay, A. A. Sergejew, D. Copolov, and G. F. Egan. 2010. Reduced connectivity of the auditory cortex in patients with auditory hallucinations: A resting state functional magnetic resonance imaging study. Psychological Medicine 40 (7):1149–58. doi:10.1017/S0033291709991632.
  • Guo, Q., H. Yang, B. Zeng, Y. Tang, L. Guanjun, T. Zhang, J. Wang, G. Northoff, C. Li, D. Goff, et al. 2020. Parietal memory network and default mode network in first‐episode drug‐naïve schizophrenia: Associations with auditory hallucination. Human Brain Mapping. 41(8):1973–84. doi:10.1002/hbm.24923.
  • Gyula, B., and P. D. Anderson. 2014. Ketamine: An update on its abuse. Journal of Pharmacy Practice 27 (6):582–86. doi:10.1177/0897190014525754.
  • Higgins, J. P. T. 2003. Measuring inconsistency in meta-analyses. The BMJ 327 (7414):557–60. doi:10.1136/bmj.327.7414.557.
  • Höflich, A., A. Hahn, M. Küblböck, G. S. Kranz, T. Vanicek, S. Ganger, M. Spies, C. Windischberger, S. Kasper, D. Winkler, et al. 2017. Ketamine-dependent neuronal activation in healthy volunteers. Brain Structure & Function. 222(3):1533–42. doi:10.1007/s00429-016-1291-0.
  • Holcomb, H. 2001. Sequential regional cerebral blood flow brain scans using PET with H215O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25 (2):165–72. doi:10.1016/S0893-133X(01)00229-9.
  • Honey, G. D., P. R. Corlett, A. R. Absalom, M. Lee, E. Pomarol-Clotet, G. K. Murray, P. J. McKenna, E. T. Bullmore, D. K. Menon, and P. C. Fletcher. 2008. Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo. Journal of Neuroscience 28 (25):6295–303. doi:10.1523/JNEUROSCI.0910-08.2008.
  • Honey, R. A. E., G. D. Honey, C. O’loughlin, S. R. Sharar, D. Kumaran, E. T. Bullmore, D. K. Menon, V. C. Lupson, R. Bisbrown-Chippendale, and P. C. Fletcher. 2004. Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task: An FMRI study. Neuropsychopharmacology 29 (6):1203–14. doi:10.1038/sj.npp.1300438.
  • Honey, G. D., R. A. E. Honey, C. O’loughlin, S. R. Sharar, D. Kumaran, J. Suckling, D. K. Menon, C. Sleator, E. T. Bullmore, and P. C. Fletcher. 2005. Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: An FMRI study. Cerebral Cortex 15 (6):749–59. doi:10.1093/cercor/bhh176.
  • Javitt, D. C., C. S. Carter, J. H. Krystal, J. T. Kantrowitz, R. R. Girgis, L. S. Kegeles, J. D. Ragland, R. J. Maddock, T. A. Lesh, C. Tanase, et al. 2018. Utility of imaging-based biomarkers for glutamate-targeted drug development in psychotic disorders: A randomized clinical trial. JAMA Psychiatry. 75(1):11. doi:10.1001/jamapsychiatry.2017.3572.
  • Karnath, H.O., and B. Baier. 2010. Right insula for our sense of limb ownership and self-awareness of actions. Brain Structure & Function 214 (5–6):411–17. doi:10.1007/s00429-010-0250-4.
  • Kotoula, V., T. Webster, J. Stone, and M. A. Mehta. 2021. Resting-state connectivity studies as a marker of the acute and delayed effects of subanaesthetic ketamine administration in healthy and depressed individuals: A systematic review. Brain and Neuroscience Advances 5 (January):239821282110554. doi:10.1177/23982128211055426.
  • Krystal, J. H., C. G. Abdallah, G. Sanacora, D. S. Charney, and R. S. Duman. 2019. Ketamine: A paradigm shift for depression research and treatment. Neuron 101 (5):774–78. doi:10.1016/j.neuron.2019.02.005.
  • Krystal, J. H., L. P. Karper, J. P. Seibyl, G. K. Freeman, R. Delaney, J. D. Bremner, G. R. Heninger, M. B. Bowers, and D. S. Charney. 1994. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry 51 (3):199–214. doi:10.1001/archpsyc.1994.03950030035004.
  • Kurdi, M., K. Theerth, and R. Deva. 2014. Ketamine: Current applications in anesthesia, pain, and critical care. Anesthesia: Essays and Researches 8 (3):283. doi:10.4103/0259-1162.143110.
  • Lally, N., A. C. Nugent, D. A. Luckenbaugh, R. Ameli, J. P. Roiser, and C. A. Zarate. 2014. Anti-anhedonic effect of ketamine and its neural correlates in treatment-resistant bipolar depression. Translational Psychiatry 4 (10):e469. doi:10.1038/tp.2014.105.
  • Lally, N., A. C. Nugent, D. A. Luckenbaugh, M. J. Niciu, J. P. Roiser, and C. A. Zarate. 2015. Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. Journal of Psychopharmacology 29 (5):596–607. doi:10.1177/0269881114568041.
  • Lancaster, J. L., A. R. Laird, S. B. Eickhoff, M. J. Martinez, P. Mickle Fox, and P. T. Fox. 2012. Automated regional behavioral analysis for human brain images. Frontiers in Neuroinformatics 6:6. doi:10.3389/fninf.2012.00023.
  • Lehmann, M., C. Neumann, S. Wasserthal, J. Schultz, A. Delis, P. Trautner, R. Hurlemann, and U. Ettinger. 2021. Effects of ketamine on brain function during metacognition of episodic memory. Neuroscience of Consciousness 2021 (1):niaa028. doi:10.1093/nc/niaa028.
  • Lena, P., and P. F. Liddle. 2012. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry & Neuroscience 37 (1):17–27. doi:10.1503/jpn.100176.
  • Lennox, B. R., S. B. G. Park, I. Medley, P. G. Morris, and P. B. Jones. 2000. The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Research: Neuroimaging 100 (1):13–20. doi:10.1016/S0925-4927(00)00068-8.
  • Limongi, R., P. Jeon, M. Mackinley, T. Das, K. Dempster, J. Théberge, R. Bartha, D. Wong, and L. Palaniyappan. 2020. Glutamate and dysconnection in the salience network: neurochemical, effective connectivity, and computational evidence in schizophrenia. Biological Psychiatry 88 (3):273–81. doi:10.1016/j.biopsych.2020.01.021.
  • Lindquist, K. A., A. B. Satpute, T. D. Wager, J. Weber, and L. Feldman Barrett. 2016. The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex 26 (5):1910–22. doi:10.1093/cercor/bhv001.
  • Luckenbaugh, D. A., M. J. Niciu, D. F. Ionescu, N. M. Nolan, E. M. Richards, N. E. Brutsche, S. Guevara, and C. A. Zarate. 2014. Do the dissociative side effects of ketamine mediate its antidepressant effects? Journal of Affective Disorders 159 (April):56–61. doi:10.1016/j.jad.2014.02.017.
  • Martino, D., M. M. Federico, X. Junqian, P.F. van de Moortele, K. Ugurbil, R. Goebel, E. Yacoub, and E. Formisano. 2015. High-resolution mapping of myeloarchitecture in vivo: Localization Of auditory areas in the human brain. Cerebral Cortex 25 (10):3394–405. doi:10.1093/cercor/bhu150.
  • Mathai, D. S., M. J. Meyer, E. A. Storch, and T. R. Kosten. 2020. The relationship between subjective effects induced by a single dose of ketamine and treatment response in patients with major depressive disorder: A systematic review. Journal of Affective Disorders 264 (March):123–29. doi:10.1016/j.jad.2019.12.023.
  • Meng, L., M. Woelfer, L. Colic, A. Safron, C. Chang, H.J. Heinze, O. Speck, H. S. Mayberg, B. B. Biswal, G. Salvadore, et al. 2020. Default mode network connectivity change corresponds to ketamine’s delayed glutamatergic effects. European Archives of Psychiatry and Clinical Neuroscience. 270(2):207–16. doi:10.1007/s00406-018-0942-y.
  • Mion, G., and T. Villevieille. 2013. Ketamine pharmacology: An update (PHARMACODYNAMICS AND MOLECULAR ASPECTS, RECENT FINDINgs). CNS Neuroscience & Therapeutics 19 (6):370–80. doi:10.1111/cns.12099.
  • Modinos, G., S. G. Costafreda, M.J. van Tol, P. K. McGuire, A. Aleman, and P. Allen. 2013. Neuroanatomy of auditory verbal hallucinations in schizophrenia: A quantitative meta-analysis of voxel-based morphometry studies. Cortex 49 (4):1046–55. doi:10.1016/j.cortex.2012.01.009.
  • Moerel, M., F. De Martino, and E. Formisano. July 2014. An anatomical and functional topography of human auditory cortical areas. Frontiers in Neuroscience 8. doi:10.3389/fnins.2014.00225.
  • Morgan, H. L., D. C. Turner, P. R. Corlett, A. R. Absalom, R. Adapa, F. S. Arana, J. Pigott, J. Gardner, J. Everitt, P. Haggard, et al. 2011. Exploring the impact of ketamine on the experience of illusory body ownership. Biological Psychiatry. 69(1):35–41. doi:10.1016/j.biopsych.2010.07.032.
  • Musso, F., J. Brinkmeyer, D. Ecker, M. K. London, G. Thieme, T. Warbrick, H.J. Wittsack, A. Saleh, W. Greb, P. de Boer, et al. 2011. Ketamine effects on brain function — simultaneous FMRI/EEG during a visual oddball task. NeuroImage. 58(2):508–25. doi:10.1016/j.neuroimage.2011.06.045.
  • Nagels, A., M. Cabanis, A. Oppel, A. Kirner-Veselinovic, C. Schales, and T. Kircher. 2018. S-Ketamine-induced NMDA receptor blockade during natural speech production and its implications for formal thought disorder in schizophrenia: A pharmaco-FMRI study. Neuropsychopharmacology 43 (6):1324–33. doi:10.1038/npp.2017.270.
  • Nagels, A., A. Kirner-Veselinovic, S. Krach, and T. Kircher. 2011. Neural correlates of S-Ketamine induced psychosis during overt continuous verbal fluency. NeuroImage 54 (2):1307–14. doi:10.1016/j.neuroimage.2010.08.021.
  • Niesters, M., C. Martini, and A. Dahan. 2014. Ketamine for chronic pain: Risks and benefits: ketamine risks and benefits. British Journal of Clinical Pharmacology 77 (2):357–67. doi:10.1111/bcp.12094.
  • Northoff, G., A. Richter, F. Bermpohl, S. Grimm, E. Martin, V. Leslie Marcar, C. Wahl, D. Hell, and H. Boeker. 2005. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in FMRI. Schizophrenia Research 72 (2–3):235–48. doi:10.1016/j.schres.2004.04.009.
  • Page, M. J., J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al. 2021. The PRISMA 2020 statement : An updated guideline for reporting systematic reviews. PLoS medicine 18 (3):e1003583. doi:10.1371/journal.pmed.1003583.
  • Pollak, T. A., S. De Simoni, B. Barimani, F. O. Zelaya, J. M. Stone, and M. A. Mehta. 2015. Phenomenologically distinct psychotomimetic effects of ketamine are associated with cerebral blood flow changes in functionally relevant cerebral foci: A continuous arterial spin labelling study. Psychopharmacology 232 (24):4515–24. doi:10.1007/s00213-015-4078-8.
  • Potvin, S., J. Pelletier, S. Grot, C. Hébert, A. M. Barr, and T. Lecomte. 2018. Cognitive deficits in individuals with methamphetamine use disorder: A meta-analysis. Addictive Behaviors 80 (May):154–60. doi:10.1016/j.addbeh.2018.01.021.
  • Potvin, S., K. Stavro, É. Rizkallah, and J. Pelletier. 2014. Cocaine and cognition: A systematic quantitative review. Journal of Addiction Medicine 8 (5):368–76. doi:10.1097/ADM.0000000000000066.
  • Powers, A. R., III, M. G. Gancsos, E. S. Finn, P. T. Morgan, and P. R. Corlett. 2015. Ketamine-induced hallucinations. Psychopathology 48 (6):376–85. doi:10.1159/000438675.
  • Pribish, A., N. Wood, and A. Kalava. 2020. A review of nonanesthetic uses of ketamine. Anesthesiology Research and Practice 2020 (April):1–15. doi:10.1155/2020/5798285.
  • Radua, J., S. Borgwardt, A. Crescini, D. Mataix-Cols, A. Meyer-Lindenberg, P. K. McGuire, and P. Fusar-Poli. 2012. Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neuroscience & Biobehavioral Reviews 36 (10):2325–33. doi:10.1016/j.neubiorev.2012.07.012.
  • Radua, J., and D. Mataix-Cols. 2012. Meta-analytic methods for neuroimaging data explained. Biology of Mood & Anxiety Disorders 2 (1):6. doi:10.1186/2045-5380-2-6.
  • Rowland, L. M., L. Beason-Held, C. A. Tamminga, and H. H. Holcomb. 2010. The interactive effects of ketamine and nicotine on human cerebral blood flow. Psychopharmacology 208 (4):575–84. doi:10.1007/s00213-009-1758-2.
  • Rubin, D. B. 2004. Multiple imputation for nonresponse in surveys, Vol. 81. John Wiley & Sons.
  • Russo, J. F., and S. A. Sheth. 2015. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurgical Focus 38 (6):E11. doi:10.3171/2015.3.FOCUS1543.
  • Sander, C. Y., and S. Hesse. 2017. News and views on in-vivo imaging of neurotransmission using PET and MRI. The Quarterly Journal of Nuclear Medicine and Molecular Imaging 61 (4):4. doi:10.23736/S1824-4785.17.03019-9.
  • Scheidegger, M., A. Henning, M. Walter, H. Boeker, A. Weigand, E. Seifritz, and S. Grimm. 2016. Effects of ketamine on cognition–emotion interaction in the brain. NeuroImage 124 (January):8–15. doi:10.1016/j.neuroimage.2015.08.070.
  • Simon, Z., V. Tourjman, J. Pelletier, R. Assaf, C.S.R. Li, and S. Potvin. 2022. Acute effects of ketamine and esketamine on cognition in healthy subjects: A meta-analysis. Progress in Neuro-Psychopharmacology & Biological Psychiatry 118 (August):110575. doi:10.1016/j.pnpbp.2022.110575.
  • Smith, S., and T. Nichols. 2009. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44 (1):83–98. doi:10.1016/j.neuroimage.2008.03.061.
  • Sos, P., M. Klirova, T. Novak, B. Kohutova, J. Horacek, and T. Palenicek. 2013. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinology Letters 34 (4):287–93.
  • Sprenger, T., M. Valet, R. Woltmann, C. Zimmer, R. Freynhagen, E. F. Kochs, T. R. Tölle, and K. J. Wagner. 2006. Imaging pain modulation by subanesthetic S-(+)-ketamine:. Anesthesia & Analgesia 103 (3):729–37. doi:10.1213/01.ane.0000231635.14872.40.
  • Stavro, K., J. Pelletier, and S. Potvin. 2013. Widespread and sustained cognitive deficits in alcoholism: A meta-analysis: alcoholism and cognition. Addiction Biology 18 (2):203–13. doi:10.1111/j.1369-1600.2011.00418.x.
  • Steffens, M., B. Becker, C. Neumann, A. M. Kasparbauer, I. Meyhöfer, B. Weber, M. A. Mehta, R. Hurlemann, and U. Ettinger. 2016. Effects oF ketamine on brain function during smooth pursuit eye movements: Effects of ketamine on brain function. Human Brain Mapping 37 (11):4047–60. doi:10.1002/hbm.23294.
  • Steffens, M., C. Neumann, A. -M. Kasparbauer, B. Becker, B. Weber, M. A. Mehta, R. Hurlemann, and U. Ettinger. 2018. Effects of ketamine on brain function during response inhibition. Psychopharmacology 235 (12):3559–71. doi:10.1007/s00213-018-5081-7.
  • Stone, J. M., K. M. Abel, M. P. Allin, N. van Haren, K. Matsumoto, P. K. McGuire, and C. H. Fu. 2011 JanDec. Ketamine-induced disruption of verbal self-monitoring linked to superior temporal activation. Pharmacopsychiatry. 44(1): 33–48. doi:10.1055/s-0030-1267942. Epub. 2010 13
  • Takahashi, T., D. Sasabayashi, Y. Takayanagi, A. Furuichi, H. Kobayashi, K. Noguchi, and M. Suzuki. 2022. Different heschl’s gyrus duplication patterns in deficit and non-deficit subtypes of schizophrenia. Frontiers in Psychiatry 13 (June):867461. doi:10.3389/fpsyt.2022.867461.
  • Takahashi, T., D. Sasabayashi, Y. Takayanagi, Y. Higuchi, Y. Mizukami, S. Nishiyama, A. Furuichi, M. Kido, T. V. Pham, and H. Kobayashi, et al. 2021. Heschl’s gyrus duplication pattern in individuals at risk of developing psychosis and patients with schizophrenia. Frontiers in Behavioral Neuroscience 15 (April):647069. doi:10.3389/fnbeh.2021.647069.
  • Thomas, D., D. E. J. Linden, M. Jandl, E. Formisano, R. Goebel, H. Lanfermann, and W. Singer. 1999. Activation oF heschl’s gyrus during auditory hallucinations. Neuron 22 (3):615–21. doi:10.1016/S0896-6273(00)80715-1.
  • Uddin, L. Q., J. S. Nomi, B. Hébert-Seropian, J. Ghaziri, and O. Boucher. 2017. Structure and function of the human insula:. Journal of Clinical Neurophysiology 34 (4):300–06. doi:10.1097/WNP.0000000000000377.
  • van Erp, T. G. M., E. Walton, D. P. Hibar, L. Schmaal, W. Jiang, D. C. Glahn, G. D. Pearlson, N. Yao, M. Fukunaga, R. Hashimoto, et al. 2018. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biological Psychiatry. 84(9):644–54. doi:10.1016/j.biopsych.2018.04.023.
  • Ven, V. G. V. D., E. Formisano, C. H. Röder, D. Prvulovic, R. A. Bittner, M. G. Dietz, D. Hubl, T. Dierks, A. Federspiel, F. Esposito, et al. 2005. The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. NeuroImage. 27(3):644–55. doi:10.1016/j.neuroimage.2005.04.041.
  • Vinckier, F., R. Gaillard, S. Palminteri, L. Rigoux, A. Salvador, A. Fornito, R. Adapa, M. O. Krebs, M. Pessiglione, and P. C. Fletcher. 2016. Confidence and psychosis: A neuro-computational account of contingency learning disruption by NMDA blockade. Molecular Psychiatry 21 (7):946–55. doi:10.1038/mp.2015.73.
  • Wasserthal, C., A. Brechmann, J. Stadler, B. Fischl, and K. Engel. 2014. Localizing the human primary auditory cortex in vivo using structural MRI. NeuroImage 93 (June):237–51. doi:10.1016/j.neuroimage.2013.07.046.
  • Yang, A., and S.J. Tsai. 2017. New targets for schizophrenia treatment beyond the dopamine hypothesis. International Journal of Molecular Sciences 18 (8):1689. doi:10.3390/ijms18081689.
  • Yurgelun-Todd, D. A., P. F. Renshaw, P. Goldsmith, U. Tolga, and T. A. Macek. 2020. A randomized, placebo-controlled, phase 1 study to evaluate the effects of TAK-063 on ketamine-induced changes in FMRI BOLD signal in healthy subjects. Psychopharmacology 237 (2):317–28. doi:10.1007/s00213-019-05366-1.
  • Zanos, P., and T. D. Gould. 2018. Mechanisms of ketamine action as an antidepressant. Molecular Psychiatry 23 (4):801–11. doi:10.1038/mp.2017.255.
  • Zhang, X., Y. Qiu, L. Jinhui, C. Jia, J. Liao, K. Chen, L. Qiu, Z. Yuan, and R. Huang. 2022. NeuraL correlates of transitive inference: An SDM meta-analysis on 32 FMRI studies. NeuroImage 258 (September):119354. doi:10.1016/j.neuroimage.2022.119354.
  • Zhou, G., J. Liu, N. G. Xiao, W. Si Jia, L. Hong, and K. Lee. 2018. The fusiform face area plays a greater role in holistic processing for own-race faces than other-race faces. Frontiers in Human Neuroscience 12 (June):220. doi:10.3389/fnhum.2018.00220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.