755
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bark beetle damage in Norwegian forests: a study of model suitability and projected impact under climate change

, , , &
Pages 30-43 | Received 08 Dec 2022, Accepted 26 Nov 2023, Published online: 08 Dec 2023

References

  • Abdullah H, Darvishzadeh R, Skidmore AK, Groen TA, Heurich M. 2018. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int J Appl Earth Observ Geoinf. 64(September 2017):199–209. doi:10.1016/j.jag.2017.09.009.
  • Annila E, Petäistö R-L.. 1978. Insect attack on windthrown trees after the December 1975 storm in western Finland. Communicationes Instituti Forestalis Fenniae. 94 :1–24.
  • Baier P, Pennerstorfer J, Schopf A. 2007. PHENIPS - a comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecol Manage. doi:10.1016/j.foreco.2007.05.020.
  • Bakke A. 1989. The recent Ips typographus outbreak in Norway : experiences from a control program author (s): Alf Bakke published by : Wiley on behalf of Nordic Society Oikos stable. Holarctic Ecol. 12(4):515–519. https://www.jstor.org/stable/3682063
  • Bakke SJ, Ionita M, Tallaksen LM. 2020. The 2018 northern European hydrological drought and its drivers in a historical perspective. Hydrol Earth Syst Sci. 24(11):5621–5653. doi:10.5194/hess-24-5621-2020.
  • Berec L, Doležal P, Hais M. 2013. Population dynamics of Ips typographus in the Bohemian forest (Czech republic): validation of the phenology model PHENIPS and impacts of climate change. Forest Ecol Manage. 292:1–9. doi:10.1016/j.foreco.2012.12.018.
  • Beylich AA. 2021. Landscapes and landforms of Norway. In: World geomorphological landscapes. doi:10.1007/978-3-030-52563-7.
  • Breidenbach J, McRoberts RE, Alberdi I, Antón-Fernández C, Tomppo E. 2021. A century of national forest inventories – informing past, present and future decisions. Forest Ecosyst. 8(1). doi:10.1186/s40663-021-00315-x.
  • Christiansen E, Bakke A. 1988. The spruce bark beetle of Eurasia. Dyn Forest Insect Popul. 479–503. doi:10.1007/978-1-4899-0789-9_23.
  • Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. 2020. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J Appl Ecol. 57(1):67–76. doi:10.1111/1365-2664.13518.
  • Fernandez-Carrillo A, Patočka Z, Dobrovolný L, Franco-Nieto A, Revilla-Romero B. 2020. Monitoring bark beetle forest damage in central Europe. A remote sensing approach validated with field data. Remote Sens (Basel). 12(21):1–19. doi:10.3390/rs12213634.
  • Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, Müller J, Qin H, Raffa KF, Schelhaas MJ, Svoboda M, et al. 2021a. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr For Rep. 7(3):138–165. doi:10.1007/s40725-021-00142-x.
  • Hlásny T, Krokene P, Liebhold A, Montagné-Huck C, Müller J, Qin H, Raffa K, Schelhaas M-J, Seidl R, Svoboda M, Viiri H. 2019. Living with bark beetles: impacts, outlook and management options. In: From science to policy (Vol. 8, Issue April). European Forest Institute. doi:10.36333/fs08.
  • Hlásny T, Zimová S, Merganičová K, Štěpánek P, Modlinger R, Turčáni M. 2021b. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Forest Ecol Manage. 490(March). doi:10.1016/j.foreco.2021.119075.
  • Honkaniemi J, Ojansuu R, Kasanen R, Heliövaara K. 2018. Interaction of disturbance agents on Norway spruce : A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT. Ecol Model. 388(December 2017):45–60. doi:10.1016/j.ecolmodel.2018.09.014.
  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environ Change. 14(2):563–578. doi:10.1007/s10113-013-0499-2.
  • Jandl R. 2020. Climate-induced challenges of Norway spruce in Northern Austria. Trees Forests People. 1(March):100008. doi:10.1016/j.tfp.2020.100008.
  • Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Jaques Miret JA, MacLeod A, et al. 2017. Pest categorisation of Ips typographus. EFSA J. 15:3. doi:10.2903/j.efsa.2017.4881.
  • Jönsson AM, Appelberg G, Harding S, Bärring L. 2009. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Global Change Biol. doi:10.1111/j.1365-2486.2008.01742.x.
  • Jönsson AM, Harding S, Krokene P, Lange H, Lindelöw Å, Økland B, Ravn HP, Schroeder LM. 2011. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim Change. 109(3–4):695–718. doi:10.1007/s10584-011-0038-4.
  • Komonen A, Schroeder LM, Weslien J. 2011. Ips typographus population development after a severe storm in a nature reserve in southern Sweden. J Appl Entomol. 135(1–2):132–141. doi:10.1111/j.1439-0418.2010.01520.x.
  • Kosunen M, Peltoniemi K, Pennanen T, Lyytikäinen-Saarenmaa P, Adamczyk B, Fritze H, Zhou X, Starr M. 2020. Storm and Ips typographus disturbance effects on carbon stocks, humus layer carbon fractions and microbial community composition in boreal Picea abies stands. Soil Biol Biochem. 148(December 2019). doi:10.1016/j.soilbio.2020.107853.
  • Landbruksdirektoratet. 2021. Faglig beredskapsplan for stor granbarkbille. https://www.landbruksdirektoratet.no/nb/skogbruk/barkbilleberedskap/faglig-beredskapsplan-for-stor-granbarkbille.
  • Lange H, Økland B, Krokene P. 2006. Thresholds in the life cycle of the spruce bark beetle under climate change. Interjournal Complex Syst. 1648:1–10.
  • Lausch A, Heurich M, Fahse L. 2013. Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecol Indicators. 31:73–81. doi:10.1016/j.ecolind.2012.07.026.
  • Lexer MJ, Hönninger K. 2001. A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. Forest Ecol Manage. 144:43–65. doi:10.1016/S0378-1127(00)00386-8.
  • Lindman L, Ranius T, Schroeder M. 2023. Regional climate affects habitat preferences and thermal sums required for development of the Eurasian spruce bark beetle, Ips typographus. Forest Ecol Manage. 544(June):121216. doi:10.1016/j.foreco.2023.121216.
  • Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, Forster B, Grégoire JC, Hurling R, Nageleisen LM, Netherer S, et al. 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 40(12):1426–1435. doi:10.1111/ecog.02769.
  • Meteorologisk Institutt. 2022. Tørr og rekordmild mars. https://kommunikasjon.ntb.no/pressemelding/torr-og-rekordmild-mars?publisherId=17846853&releaseId=17930160&lang=no.
  • Moen A. 1999. Vegetation: national Atlas of Norway. Hønefoss, Norway: Norwegian Mapping Authority.
  • Müller M, Olsson PO, Eklundh L, Jamali S, Ardö J. 2022. Features predisposing forest to bark beetle outbreaks and their dynamics during drought. Forest Ecol Manage. 523(September). doi:10.1016/j.foreco.2022.120480.
  • Netherer S, Nopp-Mayr U. 2005. Predisposition assessment systems (PAS) as supportive tools in forest management - rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. Forest Ecol Manage. 207(1-2 SPEC. ISS.):99–107. doi:10.1016/j.foreco.2004.10.020.
  • Nordkvist M, Eggers J, Fustel TLA, Klapwijk MJ. 2023. Development and implementation of a spruce bark beetle susceptibility index: a framework to compare bark beetle susceptibility on stand level. Trees, Forests People. 11. doi:10.1016/j.tfp.2022.100364.
  • Nowakowska JA, Hsiang T, Patynek P, Stereńczak K, Olejarski I, Oszako T. 2020. Health assessment and genetic structure of monumental Norway spruce trees during a bark beetle (Ips typographus L.) outbreak in the Bialowieza Forest District, Poland. Forests. 11(6):1–19. doi:10.3390/f11060647.
  • Økland B, Krokene P, Beachell AM. 2021. Granbarkbillen. Registrering av bestandsstørrelsene i 2021. In NIBIO Rapport (Vol. 7, Issue 173).
  • R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.<https://www.R-project.org/>.
  • Romeiro JMN, Eid T, Antón-Fernández C, Kangas A, Trømborg E. 2022. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change – A review of modelling approaches. Forest Ecol Manage. 509(December 2021). doi:10.1016/j.foreco.2022.120071.
  • RStudio Team. 2022. RStudio: integrated development environment for R. Boston, MA: RStudio, PBC. http://www.rstudio.com/
  • Schelhaas MJ, Nabuurs GJ, Schuck A. 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biol. 9(11):1620–1633. doi:10.1046/j.1365-2486.2003.00684.x.
  • Schlyter P, Stjernquist I, Bärring L, Jönsson AM, Nilsson C. 2006. Assessment of the impacts of climate change and weather extremes on boreal forests in Northern Europe, focusing on Norway spruce. Clim Res. doi:10.3354/cr031075.
  • Schowalter TD. 2012. Ecology and management of bark beetles (Coleoptera: Curculionidae: Scolytinae) in southern pine forests. J Integr Pest Manage. 3(2):1–7. doi:10.1603/IPM11025.
  • Schroeder M, Fritscher D. 2020. Granbarkborrens förökningsframgång i dödade träd under sommaren 2020 i sydöstra Småland, Värmland och Uppland/Västmanland.
  • Seidl R, Baier P, Rammer W, Schopf A, Lexer MJ. 2007. Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecol Model. 206(3–4):383–399. doi:10.1016/j.ecolmodel.2007.04.002.
  • Seidl R, Lexer MJ, Jäger D, Hönninger K. 2005. Evaluating the accuracy and generality of a hybrid patch model. Tree Physiol. 25(7):939–951. doi:10.1093/treephys/25.7.939.
  • Seidl R, Rammer W. 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecol. 32(7):1485–1498. doi:10.1007/s10980-016-0396-4.
  • Seidl R, Schelhaas MJ, Lindner M, Lexer MJ. 2009. Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Regional Environ Change. 9(2):101–119. doi:10.1007/s10113-008-0068-2.
  • Statistisches Bundesamt. 2021. Forest damage: logging of timber damaged by insect infestation grew more than tenfold within five years. Press Release 050. https://www.destatis.de/EN/Press/2021/08/PE21_N050_41.html.
  • Stereńczak K, Mielcarek M, Modzelewska A, Kraszewski B, Fassnacht FE, Hilszczański J. 2019. Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests. Forest Ecol Manage. 105–116. doi:10.1016/j.foreco.2019.03.064.
  • VÚLHM. 2023. The bark beetle calamity is slowly receding for the second year. https://www.vulhm.cz/en/the-bark-beetle-calamity-is-slowly-receding-for-the-second-year/.
  • Wermelinger B. 2004. Ecology and management of the spruce bark beetle Ips typographus - a review of recent research. Forest Ecol Manage. 202(1–3):67–82. doi:10.1016/j.foreco.2004.07.018.
  • Wermelinger B, Seifert M. 1998. Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae). J Appl Entomol. 122(4):185–191. doi:10.1111/j.1439-0418.1998.tb01482.x.
  • Wong WK, Haddeland I, Lawrence D, Beldring S. 2016. Gridded 1 ( 1 km climate and hydrological projections for Norway. 26.
  • Worrell R. 1983. Damage by the spruce bark beetle in South Norway 1970-80: A survey, and factors affecting its occurrence. In Meddelelser fra Norsk Institutt for Skogforskning (Norway). http://agris.fao.org/agris-search/search.do?recordID=NO8300455.
  • Zimová S, Dobor L, Hlásny T, Rammer W, Seidl R. 2020. Reducing rotation age to address increasing disturbances in Central Europe: potential and limitations. Forest Ecol Manage. 475(July):118408. doi:10.1016/j.foreco.2020.118408.