527
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Predicting snow damage in conifer forests using a mechanistic snow damage model and high-resolution snow accumulation data

, , , , &
Pages 59-75 | Received 13 Aug 2023, Accepted 19 Nov 2023, Published online: 08 Dec 2023

References

  • Brantseg A. 1969. Furu sønnafjells. Kubering av stående skog. Funksjoner og tabeller, Meddelelser fra Det norske skogforsøksvesen 26 (94–95). Vollebekk (Norway): Det norske skogforsøksvesen.
  • Büsgen M, Münch E, Thomson T. 1929. Structure and life of forest trees. 3rd ed. London (UK): Chapman & Hall.
  • Cannell MGR, Morgan J. 1989. Branch breakage under snow and ice loads. Tree Physiol. 5(3):307–317. doi:10.1093/treephys/5.3.307.
  • Díaz-Yáñez O, Mola-Yudego B, Eriksen R, González-Olabarria JR. 2016. Assessment of the main natural disturbances on Norwegian forest based on 20 years of national inventory. PLoS One. 11(8):e0161361. doi:10.1371/journal.pone.0161361.
  • Díaz-Yáñez O, Mola-Yudego B, González-Olabarria JR. 2019. Modelling damage occurrence by snow and wind in forest ecosystems. Ecol Modell. 408:108741. doi: 10.1016/j.ecolmodel.2019.108741.
  • Feser F, Barcikowska M, Krueger O, Schenk F, Weisse R, Xia L. 2015. Storminess over the North Atlantic and Northwestern Europe—a review. Q J R Metereol Soc. 141(687):350–382. doi: 10.1002/qj.2364.
  • Gardiner B. 1989. Mechanical characteristics of Sitka spruce. Forestry Commission Occasional Paper 24.
  • Getis, A, Ord JK. 1992. The analysis of spatial association by use of distance statistics. Geogr Anal. 24(3):189–206. doi:10.1111/j.1538-4632.1992.tb00261.x.
  • Gregow H, Puranen U, Venäläinen A, Peltola H, Kellomäki S, Schultz D. 2008. Temporal and spatial occurrence of strong winds and large snow load amounts in Finland during 1961–2000. Silva Fenn. 42(4). doi:10.14214/sf.231.
  • Gregow H, Rantanen M, Laurila TK, Mäkelä A. 2020. Review on winds, extratropical cyclones and their impacts in Northern Europe and Finland, Reports 2020:3. Helsinki (Finland): Finnish Meteorological Institute.
  • Groenemeijer P, Vajda A, Lehtonen I, Kämäräinen M, Venäläinen A, Gregow H, Púčik T. 2016. Present and future probability of meteorological and hydrological hazards in Europe, Technical Report. Report number: 608166-D 2.5. Delft: ESSL.
  • Hale SE, Gardiner B, Peace A, Nicoll B, Taylor P, Pizzirani S. 2015. Comparison and validation of three versions of a forest wind risk model. Environ Model Softw. 68:27–41. doi: 10.1016/j.envsoft.2015.01.016.
  • Hawcroft M, Walsh E, Hodges K, Zappa G. 2018. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ Res Lett. 13(12):124006. doi:10.1088/1748-9326/aaed59.
  • Hefny R, Kollar LE, Farzaneh M, Payrard C. 2009. Adhesion of wet snow to different cable surfaces. Paper presented at the 13th International Workshop on Atmospheric Icing of Structures, Andermatt; Sep 8–11, 2009; Switzerland.
  • Hersbach H. 2016. The ERA5 atmospheric reanalysis. Paper presented at the American Geophysical Union Fall Meeting 2016; Dec 2016; San Francisco.
  • Hosmer DW,J, Lemeshow S, Sturdivant RX. 2013. Applied logistic regression. 3rd ed, Wiley Series in Probability and Statistics. Hoboken (NJ): John Wiley & Sons.
  • IPCC. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core Writing Team, Pachauri RK, Meyer LA, editor. Geneva, Switzerland: IPCC.
  • Iversen EC, Thompson G, Nygaard BE. 2021. Improvements to melting snow behavior in a bulk microphysics scheme. Atmos Res. 253:105471. doi:10.1016/j.atmosres.2021.105471.
  • Jalkanen A, Mattila U. 2000. Logistic regression models for wind and snow damage in Northern Finland based on the National Forest Inventory data. For Ecol Manag. 135(1):315–330. doi:10.1016/S0378-1127(00)00289-9.
  • Kjellström E, Nikulin G, Strandberg G, Christensen OB, Jacob D, Keuler K, Lenderink G, van Meijgaard E, Schär C, Somot S, et al. 2018. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst Dyn. 9(2):459–478. doi:10.5194/esd-9-459-2018.
  • Klopcic M, Poljanec A, Gartner A, Boncina A. 2009. Factors related to natural disturbances in mountain Norway spruce (Picea abies) forests in the Julian Alps. Écoscience. 16(1):48–57. doi:10.2980/16-1-3181.
  • Kvaalen H, Solberg S, May J. 2015. Aldersuavhengig bonitering med laserskanning av enkelttrær. Nibio report 1/67. Ås (Norway): NIBIO.
  • Landbruksdirektoratet. 2021. Faglig beredskapsplan for stor granbarkbille. [accessed 2023 May 11]. https://www.landbruksdirektoratet.no/nb/skogbruk/barkbilleberedskap/faglig-beredskapsplan-for-stor-granbarkbille.
  • Larsson Ivanov O, Bärring L, Wilcke RAI. 2022. Climate change impact on snow loads in Northern Europe. Struct Saf. 97:102231. doi:10.1016/j.strusafe.2022.102231.
  • Lehtonen I, Hoppula P, Pirinen P, Gregow H. 2014. Modelling crown snow loads in Finland: a comparison of two methods. Silva Fenn. 48(3). doi:10.14214/sf.1120.
  • Lehtonen I, Kämäräinen M, Gregow H, Venäläinen A, Peltola H. 2016. Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Nat Hazard Earth Sys. 16(10):2259–2271. doi:10.5194/nhess-16-2259-2016.
  • Locatelli T, Hale S, Nicoll B, Gardiner B. 2022. The ForestGALES wind risk model and the fgr R package. Edinburgh (UK): UK Forestry Commision.
  • Machado Nunes Romeiro J, Eid T, Antón-Fernández C, Kangas A, Trømborg E. 2022. Natural disturbances risks in European boreal and temperate forests and their links to climate change – a review of modelling approaches. For Ecol Manag. 509:120071. doi:10.1016/j.foreco.2022.120071.
  • Mäkinen H, Hein S. 2006. Effect of wide spacing on increment and branch properties of young Norway spruce. Eur J For Res. 125(3):239–248. doi:10.1007/s10342-006-0115-9.
  • Mäkinen H, Isomäki A. 2004. Thinning intensity and growth of Norway spruce stands in Finland. For Int J Forest Res. 77(4):349–364. doi:10.1093/forestry/77.4.349.
  • Masson-Delmotte VP, Zhai P, Pirani SL, Connors C, Péan S, Berger N, Caud Y, Chen L, Goldfarb MI, Scheel Monteiro PM. 2021. IPCC, 2021: summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Moore J, Achim A, Lyon A, Mochan S, Gardiner B. 2009. Effects of early re-spacing on the physical and mechanical properties of Sitka spruce structural timber. For Ecol Manag. 258(7):1174–1180. doi:10.1016/j.foreco.2009.06.009.
  • NIBIO. 2022. SR16 - the Norwegian forest resource map. [accessed 2022 October 10]. https://kilden.nibio.no.
  • Nock CA, Jones KF, Greene DF. 2021. Chapter 6. The effect of icing events on the death and regeneration of North American trees. In: Johnson EA, Miyanishi K, editor. Plant disturbance ecology. 2nd ed. San Diego: Academic Press; p. 213–252.
  • Norwegian Meteorological Institute, Norwegian Water Resources and Energy Directorate, and Norwegian Public Roads Administration. 2023. Varsom SeNorge. [accessed 2023 April 15]. https://www.senorge.no.
  • NRK Vestfold og Telemark. 2021. Rekordmange utbetalinger etter snøskader på skog. [accessed 2023 May 11]. https://www.nrk.no/vestfoldogtelemark/utbetaler-over-20_25-millioner-kroner-for-snobrekk-av-skog-1.15533034.
  • Nygaard BE, Ingvaldsen K, Welgaard Ø. 2022. Development of ice load maps for structural design. Paper presented at the IWAIS XIX; June 2022; Montreal, Canada.
  • Nykänen M-L, Broadgate M, Kellomäki S, Peltola H, Quine C. 1997. Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn. 31(2). doi:10.14214/sf.a8519.
  • O’Gorman PA. 2014. Contrasting responses of mean and extreme snowfall to climate change. Nature. 512(7515):416–418. doi:10.1038/nature13625.
  • Ohba M, Sugimoto S. 2020. Impacts of climate change on heavy wet snowfall in Japan. Clim Dyn. 54(5–6):3151–3164. doi:10.1007/s00382-020-05163-z.
  • Päätalo M-L, Peltola H, Kellomäki S. 1999. Modelling the risk of snow damage to forests under short-term snow loading. For Ecol Manag. 116(1):51–70. doi:10.1016/S0378-1127(98)00446-0.
  • Patacca M, Lindner M, Lucas-Borja ME, Cordonnier T, Fidej G, Gardiner B, Hauf Y, Jasinevičius G, Labonne S, Linkevičius E, et al. 2023. Significant increase in natural disturbance impacts on European forests since 1950. Glb Chg Bio. 29(5):1359–1376. doi:10.1111/gcb.16531.
  • Peltola H, Kellomäki S, Väisänen H, Ikonen V-P. 1999. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can J For Res. 29(6):647–661. doi:10.1139/x99-029.
  • Petty JA, Worrell R. 1981. Stability of coniferous tree stems in relation to damage by snow. For Int J Forest Res. 54(2):115–128. doi:10.1093/forestry/54.2.115.
  • Quante L, Willner SN, Middelanis R, Levermann A. 2021. Regions of intensification of extreme snowfall under future warming. Sci Rep. 11(1). doi:10.1038/s41598-021-95979-4.
  • Quine CP, Gardiner B, Moore J. 2021. Chapter 4. Wind disturbance in forests: the process of wind created gaps, tree overturning, and stem breakage. In: Johnson EA, Miyanishi K, editor. Plant disturbance ecology. 2nd ed. San Diego: Academic Press; p. 117–184.
  • Räisänen J. 2008. Warmer climate: less or more snow? Clim Dyn. 30(2–3):307–319. doi:10.1007/s00382-007-0289-y.
  • Räisänen J. 2016. Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models. Clim Dyn. 46(1–2):339–353. doi:10.1007/s00382-015-2587-0.
  • R Core Team. 2022. R: a language and environment for statistical computing. Version 4.2.2. R Foundation for Statistical Computing. https://www.R-project.org.
  • Ruosteenoja K, Vihma T, Venäläinen A. 2019. Projected changes in European and North Atlantic Seasonal Wind Climate Derived from CMIP5 simulations. J Clim. 32(19):6467–6490. doi:10.1175/JCLI-D-19-0023.1.
  • Sakakibara D, Nakamura Y, Kawashima K, Miura S. 2007. Experimental result for snow accretion characteristics of communications cable. Paper presented at the 56th International Wire and Cable Symposium (IWCS); Nov 11–14; Lake Buena Vista, Florida, US.
  • Schelhaas M-J, Nabuurs G-J, Schuck A. 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glb Chg Bio. 9(11):1620–1633. doi:10.1046/j.1365-2486.2003.00684.x.
  • Schroeder LM, Eidmann HH. 1993. Attacks of bark- and wood-boring coleoptera on snow-broken conifers over a two-year period. Scand J Forest Res. 8(1–4):257–265. doi:10.1080/02827589309382775.
  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, et al. 2017. Forest disturbances under climate change. Nat Clim Change. 7(6):395–402. doi:10.1038/nclimate3303.
  • Šilinskas B, Varnagirytė-Kabašinskienė I, Aleinikovas M, Beniušienė L, Aleinikovienė J, Škėma M. 2020. Scots pine and Norway spruce wood properties at sites with different stand densities. Forests. 11(5):587. doi:10.3390/f11050587.
  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Liu Z, Berner J, Wang W, et al. 2021. A description of the advanced research wrf model version 4.3. In.
  • Skogbrand Forsikringsselskap Gjensidig. 2023. Snøskader. [accessed 2023 May 5]. https://www.skogbrand.no/snoskader.
  • Søgaard G, Astrup R, Allen M, Andreassen K, Bergseng E, Fløistad IS, Granhus A, et al. 2017. Skogbehandling for verdiproduksjon i et klima i endring. NIBIO Report 3/99. Ås: NIBIO.
  • Solberg S, Granhus A, Zubkov P, Merlin M, Løge K. 2022. Hvordan forebygge vind- og snøskader på skog? Norsk Skogbruk (1).
  • Solberg S, Kvaalen H, Puliti S. 2019. Age-independent site index mapping with repeated single-tree airborne laser scanning. Scand J Forest Res. 34(8):763–770. doi:10.1080/02827581.2019.1616814.
  • Strasser U. 2008. Snow loads in a changing climate: new risks? Nat Hazard Earth Sys. 8(1):1–8. doi:10.5194/nhess-8-1-2008.
  • Suvanto S, Lehtonen A, Nevalainen S, Lehtonen I, Viiri H, Strandström M, Peltoniemi M. 2021. Mapping the probability of forest snow disturbances in Finland. PLoS One. 16(7):e0254876. doi:10.1371/journal.pone.0254876.
  • Suvanto S, Peltoniemi M, Tuominen S, Strandström M, Lehtonen A. 2019. High-resolution mapping of forest vulnerability to wind for disturbance-aware forestry. For Ecol Manag. 453:117619. doi:10.1016/j.foreco.2019.117619.
  • Thiele C, Hirschfeld G. 2021. cutpointr: improved estimation and validation of optimal cutpoints in R. J Stat Softw. 98(11):1–27. doi:10.18637/jss.v098.i11.
  • Thompson G, Eidhammer T. 2014. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci. 71(10):3636–3658. doi:10.1175/JAS-D-13-0305.1.
  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 8(2):127–150. doi:10.1016/0034-4257(79)90013-0.
  • Valinger E, Fridman J. 1997. Modelling probability of snow and wind damage in Scots pine stands using tree characteristics. For Ecol Manag. 97(3):215–222. doi:10.1016/S0378-1127(97)00062-5.
  • Valinger E, Fridman J. 1999. Models to assess the risk of snow and wind damage in pine, spruce, and Birch forests in Sweden. Environ Manag. 24(2):209–217. doi:10.1007/s002679900227.
  • Venäläinen A, Lehtonen I, Laapas M, Ruosteenoja K, Tikkanen O, Viiri H, Ikonen V, Peltola H. 2020. Climate change induces multiple risks to boreal forests and forestry in Finland: a literature review. Glb Chg Bio. 26(8):4178–4196. doi:10.1111/gcb.15183.
  • Vestjordet E. 1967. Funksjoner og tabeller for kubering av stående gran, Meddelelser fra Det norske skogforsøksvesen 22. Vollebekk (Norway): Det norske skogforsøksvesen.
  • Wickham H. 2009. Ggplot2: Elegant Graphics for Data Analysis. New York (US): Springer-Verlag New York.