37
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phytosanitary assessment of black and grey alder stands in Latvia

, , , , , , , & show all
Pages 138-144 | Received 07 Jun 2023, Accepted 28 Nov 2023, Published online: 05 Dec 2023

References

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67(1):1–48. doi:10.18637/jss.v067.i01.
  • Blaga T, Dinca L, Pleșca IM. 2019. How can smart alder forests (Alnus Glutinosa (L.) Gaertn.) from the Southern Carpathians be identified and managed. Flora. 35(45):53. ISSN 2284-7995.
  • Brasier C, Kirk S, Delcan J, Cooke D, Jung T, Man In'T Veld W. 2004. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol Res. 108(10):1172–1184. doi:10.1017/S0953756204001005.
  • Bregant C, Batista E, Hilário S, Linaldeddu BT, Alves A. 2023. Phytophthora species involved in Alnus glutinosa decline in Portugal. Pathogens. 12(2):276. doi:10.3390/pathogens12020276.
  • Brice E, Usele G, Bokuma G, Lielmane I, Zadeika I, Šmits A, Kenigsvalde K, Gaitnieks T. 2010. Phytophthora and Alnus sp. Dieback in Latvia. Poster in conference Phytophthora in European forests: conference on impacts and mitigation, Viterbo, Italy June 27–30.
  • Bušs K. 1997. Forest ecosystem classification in Latvia. Proc Latv Acad Sci Sect B Nat Exact Appl Sci. 51:204–218.
  • Claessens H, Oosterbaan A, Savill P, Rondeux J. 2010. A review of the caracteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry. 83(2):163–175. doi:10.1093/forestry/cpp038.
  • Elegbede CF, Pierrat J-C, Aguayo J, Husson C, Halkett F, Marçais B. 2010. A statistical model to detect asymptomatic infectuous individuals with an application in the Phytophthota alni-induced alder decline. Phytopathology. 100:1262–1269. doi:10.1094/PHYTO-05-10-0140.
  • EPPO. 2018. First report of Phytophthora alni in Latvia. EPPO Reporting Service no. 06–2018. Num. article: 2018/122. https://gd.eppo.int/reporting/article-6316.
  • Fox J, Weisberg S. 2019. An {R} companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
  • Franić I, Prospero S, Hartmann M, Allan E, Auger-Rozenberg M-A, Grünwald NJ, Kenis M, Roques A, Schneider S, Sniezko R, et al. 2019. Are traded forest tree seeds a potential source of nonnative pests? Ecol Appl. 29(7):e01971. doi:10.1002/eap.1971.
  • Ghelardini L, Luchi N, Pecori F, Pepori AL, Danti R, Rocca G, Capretti P, Tsopelas P, Santini A. 2017. Ecology of invasive forest pathogens. Biol Invasions. 19(11):3183–3200. doi:10.1007/s10530-017-1487-0.
  • Gibbs JN, Lipscombe MA, Peace AJ. 1999. The impact of Phytophthora disease on riparian populations of common alder (Alnus glutinosa) in southern Britain. Eur J For Path. 29:9–50. doi:10.1046/j.1439-0329.1999.00129.x.
  • Gibbs JN, Van Dijk C, Weber J. 2003. Phytophthora disease of alder in Europe. For Comm Bull. 126:1–82.
  • Hayden KJ, Hardy EStJ, Garbelotto M. 2013. Oomycete diseases. In: Gonthier P, Nicolotti G, editors. Infectional forest diseases. London: CABI Publishing; p. 519–546.
  • Husson C, Marçais B. 2013. Phytophthora on Alnus spp. (alders). JKI Data Sheets Plant Dis Diagnosis. 88:8. doi:10.5073/jkidspdd.2013.043.
  • Jansons J. 2021. National Forest Monitoring data. IV cycle data. LSFRI Silava, https://www.silava.lv/petnieciba/nacionalais-meza-monitorings (In Latvian).
  • Jönsson U. 2004. Phytophthora species and oak decline – can a weak competitor cause significant root damage in a nonsterilized acidic forest soil? New Phytol. 162:211–222. doi:10.1111/j.1469-8137.2004.01016.x.
  • Jönsson U. 2006. A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytol. 171:55–68. doi:10.1111/j.1469-8137.2006.01743.x.
  • Jung T. 2009. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For Pathol. 39:73–94. doi:10.1111/j.1439-0329.2008.00566.x.
  • Jung T, Blaschke M. 2004. Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant Pathol. 53:197–208. doi:10.1111/j.0032-0862.2004.00957.x.
  • Jung T, Pérez-Sierra A, Durán A, Jung MH, Balci Y, Scanu B. 2018. Canker and decline diseases caused by soil-and airborne Phytophthora species in forests and woodlands. Pers Mol Phylogeny Evol Fungi. 40(1):182–220. doi:10.3767/persoonia.2018.40.08.
  • Jürisoo L, Adamson K, Padari A, Drenkhan R. 2019. Health of elms and Dutch elm disease in Estonia. Eur J Plant Pathol. 154:823–841. doi:10.1007/s10658-019-01707-0.
  • Jürisoo L, Selikhovkin AV, Padari A, Shevchenko SV, Shcherbakova LN, Popovichev BG, Drenkhan R. 2021. The extensive damage to elms by Dutch elm disease agents and their hybrids in northwestern Russia. Urban For Urban Green. 63:127214. doi:10.1016/j.ufug.2021.127214.
  • Krzeminska D, Kerkhof T, Skaalsveen K, Stolte J. 2019. Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA. 172:87–96. doi:10.1016/j.catena.2018.08.014.
  • Lane CR, Hobden E, Walker L, Barton VC, Inman AJ, Hughes KJD, Swan H, Colyer A, Barker I. 2007. Evaluation of a rapid diagnostic field test kit for identification of Phytophthora species, including P. ramorum and P. kernoviae at the point of inspection. Plant Pathol. 56:828–835. doi:10.1111/j.1365-3059.2007.01615.x.
  • Lenth R. 2023. _emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.5. https://CRAN.R-project.org/package = emmeans.
  • Lilja A, Kokkola M, Hantula J, Parikka P. 2006. Phytophthora ssp. – a new threat to tree seedlings and trees. Skogforskningen – Aktuell. 1:48–53.
  • Linnakoski R, Kasanen R, Dounavi A, Forbes KM. 2019. Editorial: forest health under climate change: effects on tree resilience, and pest and pathogen dynamics. Front Plant Sci. 10:1157. doi:10.3389/fpls.2019.01157.
  • Marçais B. 2022. Phytophthora alni species complex (alder Phytophthora). CABI Compendium. doi:10.1079/cabicompendium.40948.
  • Matsiakh I, Menkis A. 2023. An overview of Phytophthora species on woody plants in Sweden and other Nordic Countries. Microorganisms. 11(5):1309. doi:10.3390/microorganisms11051309.
  • McCoy AG, Miles TD, Bilodeau GJ, Woods P, Blomquist C, Martin FN, Chilvers MI. 2020. Validation of a preformulated, field deployable, recombinase polymerase amplification assay for Phytophthora species. Plants. 9(4):466. doi:10.3390/plants9040466.
  • Norkute G. 2018. Tris svarbias miško medžiu ligas – Alksniu džiūti, goubu mara ir uosiu džiūti sukeliančiu inaziniu patogenu populiaciju tyrimai [Characterization of populations of invasive pathogens – causal agents of three major forest tree diseases: alder decline, Dutch elm disease and ash dieback]. Daktaro disertacijos santrauka. Biomedicinos mokslai, Ekologija ir aplinkotyra, Vilniaus Universitetas, Gamtos tyrimų centras, Vilnius [In Lithuanian].
  • Parke JL, Redekar NR, Eberhart JL, Funahashi F. 2019. Hazard analysis for Phytophthora species in container nurseries: three case studies. HortTechnology Hortte. 29(6):745–755. doi:10.21273/HORTTECH04304-19.
  • Ramans K. 1994. Ainavrajonēšana. In: Grām: Kavacs G. (red.), Enciklopēdija “Latvija un latvieši. Latvijas daba.” 1. sēj. Rīga, Latvijas enciklopēdija, 22. – 24. lpp. [In Latvian].
  • R Core Team. 2023. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rojas-Rojas FU, Vega-Arreguín JC. 2021. Epigenetic insight into regulatory role of chromatin covalent modifications in lifecycle and virulence of Phytophthora. Environ Microbiol Rep. 13(4):445–457. doi:10.1111/1758-2229.12954.
  • Rudāns E. 2020. Ūdensteču ietekme uz Phytophthora alni Brasier & S.A.Kirk izplatību baltalkšņA (Alnus incana (L.) Moench) mežaudzēs Dienvidlatgalē [master’s thesis]. Latvian University of Agriculture and Technologies. 49 pp. [In Latvian].
  • Schnitzler A, Hale BW, Alsum EM. 2007. Examining native and exotic species diversity in European riparian forests. Biol Conserv. 138(1–2):146–156. doi:10.1016/j.biocon.2007.04.010.
  • Serrano MS, Romero MA, Homet P, Gómez-Aparicio L. 2022. Climate change impact on the population dynamics of exotic pathogens: The case of the worldwide pathogen Phytophthora cinnamomi. Agric For Meteorol. 322:109002. doi:10.1016/j.agrformet.2022.109002.
  • Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol. 21(10):640–656. doi:10.1038/s41579-023-00900-7.
  • Solla A, Perez-Sierra A, Corcobado T, Haque MM, Diez JJ, Jung T. 2010. Phytophthora alni on Alnus glutinosa reported for a first time in Spain. Plant Pathol. 59(4):798. doi:10.1111/j.1365-3059.2009.02254.x.
  • Strnadova V, Černy K, Holub V, Gregorova B. 2010. The effects of flooding and Phytophthora alni infection on black alder. J For Sci. 58(1):40–45.
  • Trzewik A, Maciorowski R, Orlikowska T. 2022. Pathogenicity of Phytophthora× alni isolates obtained from symptomatic trees, soil and water against alder. Forests. 13(1):20. doi:10.3390/f13010020.
  • Trzewik A, Orlikowski LB, Oszako T, Nowakowska JA, Orlikowska T. 2015. The characterization of Phytophthora isolates obtained from diseased Alnus glutinosa in Poland. Balt For. 21:44–50.
  • Vannini A, Bruni N, Tomassini A, Franceschini S, Vettraino AM. 2013. Pyrosequencing of environmental soil samples reveals biodiversity of the Phytophthora resident community in chestnut forests. FEMS Microbiol Ecol. 85(3):433–442. doi:10.1111/1574-6941.12132.
  • Villa NO, Kageyama K, Asano T, Suga H. 2006. Phylogenetic relationships of Pythium and Phytophthora species based on ITS rDNA, cytochrome oxidase II and beta-tubulin gene sequences. Mycologia. 98(3):410–422. doi:10.3852/mycologia.98.3.410.
  • Wagner SC. 2011. Biological nitrogen fixation. Nat Educ Knowl. 3(10):15.
  • Zamora-Ballesteros C, Haque MMU, Diez JJ, Martín-García J. 2017. Pathogenicity of Phytophthora alni complex and P. pluvivora in Alnus glutinosa seedlings. For Pathol. 47(2):e12299. doi:10.1111/efp.12299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.