75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Gas exchange and 13C-based estimates of intrinsic water-use efficiency show different responses to CO2 enrichment: a global meta-analysis of experimental studies

&
Pages 110-118 | Received 18 Jul 2023, Accepted 04 Jan 2024, Published online: 12 Jan 2024

References

  • Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Francesca Cotrufo M. 2013. Elevated CO2 increases tree-level intrinsic water use efficiency:insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol. 197:544–554. doi:10.1111/nph.12044.
  • Bonan GB. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science. 320:1444–1449. doi:10.1126/science.1155121.
  • Broadmeadow MSJ, Griffiths H, Maxwell C, Borland AM. 1992. The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO2 within tropical forest formations in Trinidad. Oecologia. 89:435–441. doi:10.1007/BF00317423.
  • Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS. 2009. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol. 183:839–847. doi:10.1111/j.1469-8137.2009.02844.x.
  • Cao M, Wu C, Liu JC, Jiang YJ. 2020. Increasing leaf δ13C values of woody plants in response to water stress induced by tunnel excavation in a karst trough valley: Implication for improving water-use efficiency. J Hydrol. 586:124895. doi:10.1016/j.jhydrol.2020.124895.
  • Curtis PS, Wang XZ. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia. 113:299–313. doi:10.1007/s004420050381.
  • Del Amor FM, Cuadra-Crespo P. 2011. Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul. 63:55–62. doi:10.1007/s10725-010-9511-8.
  • Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, et al. 2017. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agric For Meteorol. 247:454–466. doi:10.1016/j.agrformet.2017.08.026.
  • Eamus D, Cleverly J, Boulain N, Grant N, Faux R, Villalobos-Vega R. 2013. Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of season patterns and responses to rainfall events. Agric For Meteorol. 182–183:225–238. doi:10.1016/j.agrformet.2013.04.020.
  • Ellsworth DS. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ. 22:461–472. doi:10.1046/j.1365-3040.1999.00433.x.
  • Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 40:503–537. doi:10.1146/annurev.pp.40.060189.002443.
  • Farquhar GD, O’Leary MH, Berry JA. 1982. On the relationship between carbon Isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol. 9:121–137. doi:10.1071/pp9820121.
  • Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK. 2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 34:796–818. doi:10.1093/treephys/tpu040.
  • Ghannoum O, Phillips NG, Sears MA, Logan BA, Lewis JD, Conroy JP, Tissue DAVIDT. 2010. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant Cell Environ. 33:1671–1681. doi:10.1111/j.1365-3040.2010.02172.x.
  • Hall M, Räntfors M, Slaney M, Linder S, Wallin G. 2009. Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers. Tree Physiol. 29:467–481. doi:10.1093/treephys/tpn047.
  • Hu J, Moore DJP, Riveros-Iregui DA, Burns SP, Monson RK. 2010. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios. New Phytol. 185:1000–1015. doi:10.1111/j.1469-8137.2009.03154.x.
  • Huang XM, Terrer C, Dijkstra FA, Hungate BA, Zhang WJ, Van Groenigen KJ. 2020. New soil carbon sequestration with nitrogen enrichment: a meta-analysis. Plant Soil. 454:299–310. doi:10.1007/s11104-020-04617-x.
  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature. 499:324–327. doi:10.1038/nature12291.
  • Knauer J, Zaehle S, De Kauwe MG, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C. 2019. Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Glb Chg Bio. 25:1820–1838. doi:10.1111/gcb.14604.
  • Korner C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol. 172:393–411. doi:10.1111/j.1469-8137.2006.01886.x.
  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot. 60:2859–2876. doi:10.1093/jxb/erp096.
  • Leavitt SW, Idso SB, Kimball BA, Burns JM, Sinha A, Stott L. 2003. The effect of long-term atmospheric CO2 enrichment on the intrinsic water-use efficiency of sour orange trees. Chemosphere. 50:217–222. doi:10.1016/S0045-6535(02)00378-8.
  • Lewis JD, Lucash M, Olszyk D, Tingey DT. 2001. Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant Cell Environ. 24:539–548. doi:10.1046/j.1365-3040.2001.00700.x.
  • Lewis JD, Olszyk D, Tingey DT. 1999. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiol. 19:243–252. doi:10.1093/treephys/19.4-5.243.
  • Lin W, Barbour MM, Song X. 2022. Do changes in tree-ring δ18O indicate changes in stomatal conductance? New Phytol. 236:803–808. doi:10.1111/nph.18431.
  • Long SP. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14:729–739. doi:10.1111/j.1365-3040.1991.tb01439.x.
  • Luo YQ, Hui DF, Zhang DQ. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology. 87:53–63. doi:10.1890/04-1724.
  • Luomala EM, Laitinen K, Kellomäki S, Vapaavuori E. 2003. Variable photosynthetic acclimation in consecutive cohorts of scots pine needles during 3 years of growth at elevated CO2 and elevated temperature. Plant Cell Environ. 26:645–660. doi:10.1046/j.1365-3040.2003.01000.x.
  • Maier CA, Johnsen KH, Butnor J, Kress LW, Anderson PH. 2002. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Tree Physiol. 22:1093–1106. doi:10.1093/treephys/22.15-16.1093.
  • Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A. 2011. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol. 25:456–467. doi:10.1111/j.1365-2435.2010.01822.x.
  • Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG. 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25:343–357. doi:10.1046/j.0016-8025.2001.00811.x.
  • Niinemets Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ. 30:1052–1071. doi:10.1111/j.1365-3040.2007.01683.x.
  • Niinemets Ü, Flexas J, Peñuelas J. 2011. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol. 26:136–142. doi:10.1016/j.tree.2010.12.012.
  • Norby RJ, Zak DR. 2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst. 42:181–203. doi:10.1146/annurev-ecolsys-102209-144647.
  • Pataki DE, Ellsworth DS, Evans RD, Gonzalez-Meler M, King J, Leavitt SW, Lin G, Matamala R, Pendall E, Siegwolf R, et al. 2003. Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience. 53:805–818. doi:10.1641/0006-3568(2003)053[0805:TCIEFU]2.0.CO;2.
  • Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr AG. 2006. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glb Chg Bio. 12:294–310. doi:10.1111/j.1365-2486.2005.01103.x.
  • Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. 2021. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytol. 233:1560–1596. doi:10.1111/nph.17802.
  • Poorter H, Pepin S, Rijkers T, De Jong Y, Evans JR, Körner C. 2006. Construction costs, chemical composition and payback time of high- and low-irradiance leaves. J Exp Bot. 57:355–371. doi:10.1093/jxb/erj002.
  • Quentin AG, Crous KY, Barton CVM, Ellsworth DS. 2015. Photosynthetic enhancement by elevated CO2 depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Tree Physiol. 35:1249–1263. doi:10.1093/treephys/tpv110.
  • Saurer M, Siegwolf RTW, Schweingruber FH. 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glb Chg Bio. 10:2109–2120. doi:10.1111/j.1365-2486.2004.00869.x.
  • Seibt U, Rajabi A, Griffiths H, Berry JA. 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia. 155:441–454. doi:10.1007/s00442-007-0932-7.
  • Soh WK, Yiotis C, Murray M, Parnell A, Wright IJ, Spicer RA, Lawson T, Caballero R, McElwain JC. 2019. Rising CO2 drives divergence in water use efficiency of evergreen and deciduous plants. Sci Adv. 5:eaax7906. doi:10.1126/sciadv.aax7906.
  • Tang B, Yin CY, Yang H, Sun YY, Liu Q. 2017. The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in Picea asperata. Acta Physiol Plant. 39:148. doi:10.1007/s11738-017-2451-4.
  • Tang X, Li HP, Desai AR, Nagy Z, Luo JH, Kolb TE, Olioso A, Xu X, Yao L, Kutsch W, et al. 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on earth? Sci Rep. 4:7483. doi:10.1038/srep07483.
  • Tarin T, Nolan RH, Medlyn BE, Cleverly J, Eamus D. 2019. Water-use efficiency in a semi-arid woodland with high rainfall variability. Glb Chg Bio. 26:496–508. doi:10.1111/gcb.14866.
  • Tingey DT, Lee EH, Phillips DL, Rygiewicz PT, Waschmann RS, Johnson MG, Olszyk DM. 2007. Elevated CO2 and temperature alter net ecosystem C exchange in a young Douglas fir mesocosm experiment. Plant Cell Environ. 30:1400–1410. doi:10.1111/j.1365-3040.2007.01713.x.
  • Tjoelker MG, Oleksyn J, Reich PB. 1998. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature. Tree Physiol. 18:715–726. doi:10.1093/treephys/18.11.715.
  • Vaz M, Cochard H, Gazarini L, Graca J, Chaves MM, Pereira JS. 2012. Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2 and water stress: photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees Struct Funct. 26:1145–1157. doi:10.1007/s00468-012-0691-x.
  • Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. J Stat Softw. 36:1–48. doi:10.18637/jss.v036.i03.
  • Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, et al. 2020. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229:2413–2445. doi:10.1111/nph.16866.
  • Wallin G, Hall M, Slaney M, Räntfors M, Medhurst J, Linder S. 2013. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO2] and air temperature. Tree Physiol. 33:1177–1191. doi:10.1093/treephys/tpt066.
  • Wang D, Heckathorn SA, Wang XZ, Philpott SM. 2012. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia. 169:1–13. doi:10.1007/s00442-011-2172-0.
  • Wang K, Kellomaki S, Laitinen K. 1995. Effects of needle age, long-term temperature and CO2 treatments on the photosynthesis of Scots pine. Tree Physiol. 15:211–218. doi:10.1093/treephys/15.4.211.
  • Wang KY, Kellomäki S, Zha T. 2003. Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation. Photosynthetica. 41:167–175. doi:10.1023/B:PHOT.0000011948.00870.db.
  • Wang ZG, Wang CK. 2021. Responses of tree leaf gas exchange to elevated CO2 combined with changes in temperature and water availability. A global synthesis. Glob Ecol Biogeogr. 30:2500–2512. doi:10.1111/geb.13394.
  • Wullschleger SD, Tschaplinski TJ, Norby RJ. 2002. Plant water relations at elevated CO2 – implications for water-limited environments. Plant Cell Environ. 25:319–331. doi:10.1046/j.1365-3040.2002.00796.x.
  • Zou J, Yu LF, Huang ZS. 2019. Variation of leaf carbon isotope in plants in different lithological habitats in a karst area. Forests. 10:356. doi:10.3390/f10040356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.