403
Views
0
CrossRef citations to date
0
Altmetric
Pages 893-904 | Received 30 Nov 2023, Accepted 27 Feb 2024, Published online: 19 Mar 2024

References

  • World Health Organization (WHO). Immunization coverage. July 14, 2022. https://www.who.int/news-room/fact-sheets/detail/immunization-coverage. Accessed July 11, 2023.
  • Maman K, Zöllner Y, Greco D, et al. The value of childhood combination vaccines: from beliefs to evidence. Hum Vaccin Immunother. 2015;11(9):2132–2141. doi: 10.1080/21645515.2015.1044180.
  • Centers for Disease Control and Prevention. Combination vaccines. August 1, 2019. https://www.cdc.gov/vaccines/parents/why-vaccinate/combination-vaccines.html. Accessed July 11, 2023.
  • Orsi A, Azzari C, Bozzola E, et al. Hexavalent vaccines: characteristics of available products and practical considerations from a panel of Italian experts. J Prev Med Hyg. 2018;59(2):E107–E119.
  • Obando-Pacheco P, Rivero-Calle I, Gómez-Rial J, et al. New perspectives for hexavalent vaccines. Vaccine. 2018;36(36):5485–5494. doi: 10.1016/j.vaccine.2017.06.063.
  • Kurosky SK, Davis KL, Krishnarajah G. Effect of combination vaccines on completion and compliance of childhood vaccinations in the United States. Hum Vaccin Immunother. 2017; 13(11):2494–2502. doi: 10.1080/21645515.2017.1362515.
  • Wilsdon T, Lawlor R, Li L, et al. The impact of vaccine procurement methods on public health in selected European countries. Expert Rev Vaccines. 2020;19(2):123–132. doi: 10.1080/14760584.2020.1717952.
  • European Medicines Agency (EMA). European Public Assessment Report: vaxelis. February 20, 2023a. https://www.ema.europa.eu/en/medicines/human/EPAR/vaxelis. Accessed July 11, 2023.
  • European Medicines Agency (EMA). European Public Assessment Report: infanrix hexa. May 24, 2023b. https://www.ema.europa.eu/en/medicines/human/EPAR/infanrix-hexa. Accessed July 11, 2023.
  • Wilck MB, Xu ZJ, Stek JE, et al. Safety and immunogenicity of a fully-liquid DTaP-IPV-Hib-HepB vaccine (vaxelis™) in premature infants. Hum Vaccin Immunother. 2021; 17(1):191–196. doi: 10.1080/21645515.2020.1756668.
  • Knuf M, Charkaluk ML, The Nguyen PN, et al. Penta- and hexavalent vaccination of extremely and very-to-moderate preterm infants born at less than 34 weeks and/or under 1500 g: a systematic literature review. Hum Vaccin Immunother. 2023;19(1):2191575. doi: 10.1080/21645515.2023.2191575.
  • World Health Organization (WHO). Vaccination schedule for Switzerland. 2023. https://immunizationdata.who.int/pages/schedule-by-country/che.html. Accessed July 11, 2023.
  • Swiss Confederation. Swiss vaccination schedule 2023. 2023. https://www.bag.admin.ch/bag/de/home/gesund-leben/gesundheitsfoerderung-und-praevention/impfungen-prophylaxe/schweizerischer-impfplan.html. Accessed August 15, 2023.
  • Swissmedic. 2023. https://www.swissmedicinfo.ch/. Accessed July 11, 2023.
  • Silfverdal SA, Icardi G, Vesikari T, et al. A phase III randomized, double-blind, clinical trial of an investigational hexavalent vaccine given at 2, 4, and 11-12 months. Vaccine. 2016; 34(33):3810–3816. doi: 10.1016/j.vaccine.2016.05.054.
  • De Coster I, Fournie X, Faure C, et al. Assessment of preparation time with fully-liquid versus non-fully liquid paediatric hexavalent vaccines. A time and motion study. Vaccine. 2015;33(32):3976–3982. doi: 10.1016/j.vaccine.2015.06.030.
  • Icardi G, Orsi A, Rosati GV, et al. Preferences of healthcare professionals regarding hexavalent pediatric vaccines in Italy: a survey of attitudes and expectations. J Prev Med Hyg. 2020;61(3):E424.
  • Esteve IC, Fernández Fernández P, López Palacios S, et al. Health care professionals’ preference for a fully liquid, ready-to-use hexavalent vaccine in Spain. Prev Med Rep. 2021; 22:101376. doi: 10.1016/j.pmedr.2021.101376.
  • Lloyd AJ, Nafees B, Ziani E, et al. What are the preferences of health care professionals in Germany regarding fully liquid, ready-to-use hexavalent pediatric vaccine versus hexavalent pediatric vaccine that needs reconstitution? Patient Prefer Adherence. 2015;9:1517–1524. doi: 10.2147/PPA.S87229.
  • Bakhache P, Virey B, Bienenfeld C. Knowledge and practices regarding infant vaccination: results of a survey of French physicians. Eur J Pediatr. 2019; 178(4):533–540. doi: 10.1007/s00431-018-03314-3.
  • Mathijssen DA, Heisen M, Clark-Wright JF, et al. Budget impact analysis of introducing a non-reconstituted, hexavalent vaccine for pediatric immunization in the United Kingdom. Expert Rev Vaccines. 2020;19(12):1167–1175. doi: 10.1080/14760584.2020.1873770.
  • Lang J, Bencina G, Samant S, et al. Cost implication of introducing a fully liquid ready to use pediatric hexavalent vaccine in the United Kingdom (UK) and Switzerland Poster presented at European Society For Paediatric Infectious Diseases 2021 Virtual Meeting; May 24–29, 2021.
  • Clark M, Determann D, Petrou S, et al. Discrete choice experiments in health economics: a review of the literature. Pharmacoeconomics. 2014;32(9):883–902. doi: 10.1007/s40273-014-0170-x.
  • Soekhai V, de Bekker-Grob EW, Ellis AR, et al. Discrete choice experiments in health economics: past, present and future. Pharmacoeconomics. 2019;37(2):201–226. doi: 10.1007/s40273-018-0734-2.
  • Bridges JFP, Hauber AB, Marshall D, et al. Conjoint analysis applications in health—a checklist: a report of the ISPOR good research practices for conjoint analysis task force. Value Health. 2011;14(4):403–413. doi: 10.1016/j.jval.2010.11.013.
  • Johnson FR, Lancsar E, Marshall D, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR conjoint analysis discrete-choice experiment experimental design good research practices task force. Value Health. 2013;16(1):3–13. doi: 10.1016/j.jval.2012.08.2223.
  • Hauber AB, González JM, Groothuis-Oudshoorn CG, et al. Statistical methods for the analysis of discrete choice experiments: a report of the ISPOR conjoint analysis experimental design task force. Value Health. 2016;19(4):300–315. doi: 10.1016/j.jval.2016.04.004.
  • Louviere JJ, Hensher DA, Swait JD. Stated choice methods: analysis and applications. New York: Cambridge University Press; 2000.
  • Marshall D, Bridges JFP, Hauber AB, et al. Discrete-choice experiment applications in health—how are studies being designed and reported? An update on current practice in the published literature between 2005 and 2008. Patient. 2010; 3(4):249–256. doi: 10.2165/11539650-000000000-00000.
  • Samant S, Petigara T, Aggarwal J, et al. Physician preferences for attributes of pediatric combination vaccines in the United States. Curr Med Res Opin. 2022;38(11):2003–2009. doi: 10.1080/03007995.2022.2079262.
  • Carlsson F, Martinsson P. Design techniques for stated preference methods in health economics. Health Econ. 2003;12(4):281–294. doi: 10.1002/hec.729.
  • Cook RD, Nachtrheim CJ. A comparison of algorithms for constructing exact D-optimal designs. Technometrics. 1989;22(3):315–324. doi: 10.1080/00401706.1980.10486162.
  • Hole AR. DCREATE: stata module to create efficient designs for discrete choice experiments. Statistical software components S458059. Boston (MA): Boston College Department of Economics; 2015.
  • Kuhfeld W, Tobias F, Garratt A. Efficient experimental design with marketing research applications. J Marketing Res. 1997;31(4):545–557. doi: 10.1177/002224379403100408.
  • Sándor Z, Wedel M. Designing conjoint choice experiments using managers’ prior beliefs. J Mark Res. 2001;38(4):430–444. doi: 10.1509/jmkr.38.4.430.18904.
  • Hensher DA, Rose JM, Greene WH. Applied choice analysis. Cambridge, UK Cambridge University Press; 2005.
  • World Health Organization (WHO). Haemophilus influenzae type b (Hib) Vaccination Position Paper. July 27, 2013. https://www.who.int/publications/i/item/who-wer8839-413-426. Accessed August 15, 2023.
  • European Centre for Disease Prevention and Control. Factsheet about invasive Haemophilus influenzae disease. 2023. https://www.ecdc.europa.eu/en/invasive-haemophilus-influenzae-disease/facts. Accessed July 11, 2023.
  • Steens A, Stanoeva KR, Knol MJ, et al. Increase in invasive disease caused by Haemophilus influenzae b, The Netherlands, 2020 to 2021. Euro Surveill. 2021; 26(42):2100956. doi: 10.2807/1560-7917.ES.2021.26.42.2100956.
  • Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the invasive respiratory infection surveillance initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021; 3(6):e360–e370. doi: 10.1016/S2589-7500(21)00077-7.
  • Middeldorp M, van Lier A, van der Maas N, et al. Short term impact of the COVID-19 pandemic on incidence of vaccine preventable diseases and participation in routine infant vaccinations in The Netherlands in the period March-September 2020. Vaccine. 2021;39(7):1039–1043. doi: 10.1016/j.vaccine.2020.12.080.
  • Deghmane AE, Taha MK. Changes in invasive Neisseria meningitidis and Haemophilus influenzae infections in France during the COVID-19 pandemic. Microorganisms. 2022;10(5):907. doi: 10.3390/microorganisms10050907.
  • Hong E, Terrade A, Denizon M, et al. Haemophilus influenzae type b (hib) seroprevalence in France: impact of vaccination schedules. BMC Infect Dis. 2021;21(1):715. doi: 10.1186/s12879-021-06440-w.
  • Vesikari T, Becker T, Vertruyen AF, et al. A phase III randomized, double-blind, clinical trial of an investigational hexavalent vaccine given at two, three, four and twelve months. Pediatr Infect Dis J. 2017;36(2):209–215. doi: 10.1097/INF.0000000000001406.
  • Wilck MB, Jin Xu Z, Stek JE, et al. Protective immune responses against Haemophilus influenza type b elicited by a fully-liquid DTaP-IPV-Hib-HepB vaccine (VAXELIS™). Vaccine. 2021;39(9):1428–1434. doi: 10.1016/j.vaccine.2021.01.046.
  • EudraCT. 2019-002988-10. May 24, 2023. https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-002988-10/results. Accessed August 17, 2023.
  • Ho MP, Gonzalez JM, Lerner HP, et al. Incorporating patient-preference evidence into regulatory decision making. Surg Endosc. 2015;29(10):2984–2993. doi: 10.1007/s00464-014-4044-2.