Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 11
1,730
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synergistic effect of residual elements on oxidation rates and oxide/metal interface characteristics in a low-carbon steel oxidized at 1180°C for 3 hours

ORCID Icon, , , &
Pages 1559-1570 | Received 31 Oct 2022, Accepted 06 Apr 2023, Published online: 01 May 2023

References

  • Spooner S, Davis C, Li Z. Modelling the cumulative effect of scrap usage within a circular UK steel industry – residual element aggregation. Ironmak Steelmak. 2020;47:1100. doi:10.1080/03019233.2020.1805276
  • Kapoor I, Davis C, Li Z. Effects of residual elements during the casting process of steel production: a critical review. Ironmak Steelmak. 2021;48:712. doi:10.1080/03019233.2021.1898869
  • Daehn KE, Cabrera Serrenho A, Allwood JM. How will copper contamination constrain future global steel recycling? Environ Sci Technol. 2017;51:6599. doi:10.1021/acs.est.7b00997
  • EFRaR Federation. EU-27 Steel Scrap Specification European Ferrous Recovery and Recycling Federation. Brussels: EFRaR Federation; 2007.
  • Duan J, Farrugia D, Davis C, et al. Effect of impurities on the microstructure and mechanical properties of a low carbon steel. Ironmak Steelmak. 2021;48:140–146. doi:10.1080/03019233.2021.1972270.
  • Bergman Å, West R. Copper enrichment during reheating. Scr Metall. 1988;22:659. doi:10.1016/S0036-9748(88)80178-9
  • Li N, Jia R, Zhang H, et al. In-situ Cu Coating on Steel Surface after Oxidizing at High Temperature. Materials (Basel). 2019;12:3536. doi:10.3390/ma12213536.
  • Birks N, Meier GH, Pettit FS. Introduction to the high temperature oxidation of metals. Cambridge: Cambridge University Press; 2006.
  • Osei R, Lekakh S, O’Malley R. Effect . Low C steel reheated in a combustion Gas atmosphere. Oxid Met. 2022;98:363–383. doi:10.1007/s11085-022-10125-3.
  • Yeşiltepe S, Şeşen MK. High-temperature oxidation kinetics of Cu bearing carbon steel. SN Appl Sci. 2020;2:643. doi:10.1007/s42452-020-2473-1.
  • Young DJ. High temperature oxidation and corrosion of metals. Amsterdam: Elsevier; 2016.
  • Imai N, Komatsubara N, Kunishige K. Effect of Cu, Sn and Ni on Hot workability of hot-rolled mild steel. ISIJ Int. 1997;37:217. doi:10.2355/isijinternational.37.217
  • Imai N, Komatsubara N, Kunishige K. Effects of Cu and other tramp elements on steel properties. effect of Cu and Ni on Hot workability of Hot-rolled mild steel. ISIJ Int. 1997;37:224. doi:10.2355/isijinternational.37.224
  • Fukagawa T, Fujikawa H. Effect of small amounts of Ni on liquid-Cu embrittlement in hot-rolled mild steel after high-temperature oxidation. Oxid Met. 1999;52:177. doi:10.1023/A:1018883326123
  • Shibata K, Seo S-J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels. Mater Trans. 2002;43:292. doi:10.2320/matertrans.43.292
  • Chen RY, Yuen WYD. Copper enrichment behaviours of copper-containing steels in simulated thin-slab casting processes. ISIJ Int. 2005;45:807. doi:10.2355/isijinternational.45.807
  • Webler BA, Sridhar S. Evolution and distribution of the copper-rich phase during oxidation of an Iron–0.3wt-%Copper Alloy at 1150°C. ISIJ Int. 2008;48:1345. doi:10.2355/isijinternational.48.1345
  • Webler B, Yin L, Sridhar S. Effects of small additions of copper and copper + nickel on the oxidation behavior of iron. Metall Mater Trans B. 2008;39:725. doi:10.1007/s11663-008-9196-9
  • Yin L, Sampson E, Nakano J, et al. The effects of nickel/Tin ratio on Cu induced surface hot shortness in Fe. Oxid Met. 2011;76:367. doi:10.1007/s11085-011-9261-7
  • Garza LG, Van Tyne CJ. Surface hot-shortness of 1045 forging steel with residual copper. J Mater Process Technol. 2005;159:169. doi:10.1016/j.jmatprotec.2004.05.004
  • Yin L, Sridhar S. Effects of small additions of Tin on high-temperature oxidation of Fe-Cu-Sn alloys for surface hot shortness. Metall Mater Trans B. 2010;41:1095. doi:10.1007/s11663-010-9418-9
  • Yin L, Balaji S, Sridhar S. Effects of nickel on the oxide/metal interface morphology and oxidation rate during high-temperature oxidation of Fe–Cu–Ni alloys. Metall Mater Trans B. 2010;41:598. doi:10.1007/s11663-009-9334-z
  • Vedaei-Sabegh A, Morin J-B, Jahazi M. Influence of nickel on high-temperature oxidation and characteristics of oxide layers in two high-strength steels. Steel Res Int. 2020;91:1900536. doi:10.1002/srin.201900536.
  • Païdassi J. Sur la cinetique de l’oxydation du fer dans l’air dans l’intervalle 700–1250°C. Acta Metall. 1958;6:184. doi:10.1016/0001-6160(58)90006-3
  • Sheasby J, Boggs W, Turkdogan E. Scale growth on steels at 1200°C: rationale of rate and morphology. Metal Sci. 1984;18:127. doi:10.1179/msc.1984.18.3.127
  • Saunders N, Miodownik A. The Cu-Sn (copper-tin) system. Bull Alloy Phase Diagrams. 1990;11:278. doi:10.1007/BF03029299
  • Sampson E, Sridhar S. Effect of silicon on hot shortness in Fe-Cu-Ni-Sn-Si alloys during isothermal oxidation in air. Metall Mater Trans B. 2013;44:1124. doi:10.1007/s11663-013-9876-y
  • Peng H. The role of silicon in hot shortness amelioration of steel containing copper and Tin. Oxid Met. 2016;85:599. doi:10.1007/s11085-016-9614-3
  • Akamatsu S, Senuma T, Takada Y, et al. Effect of nickel and tin additions on formation of liquid phase in copper bearing steels during high temperature oxidation. Mater Sci Technol. 1999;15:1301. doi:10.1179/026708399101505257
  • Chen RY, Yuen WYD. Isothermal and step isothermal oxidation of copper-containing steels in Air at 980–1220°C. Oxid Metals. 2005;63:145. doi:10.1007/s11085-004-3197-0
  • Zou D, Zhou Y, Zhang X, et al. High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel. Mater Char. 2018;136:435. doi:10.1016/j.matchar.2017.11.038
  • Li S, Wen P, Li S, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening. Acta Mater. 2021;205:116567.
  • Yu Z, Chen M, Shen C, et al. Oxidation of an austenitic stainless steel with or without alloyed aluminum in O2 + 10% H2O environment at 800°C. Corros Sci. 2017;121:105. doi:10.1016/j.corsci.2017.03.015
  • Chen RY, Yeun WYD. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxid Met. 2003;59:433. doi:10.1023/A:1023685905159
  • Rhines FN, Wolf JS. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel. Metall Trans. 1970;1:1701. doi:10.1007/BF02642020
  • Prescott R, Graham M. The formation of aluminum oxide scales on high-temperature alloys. Oxid Met. 1992;38:233. doi:10.1007/BF00666913
  • Caplan D, Sproule G. Effect of oxide grain structure on the high-temperature oxidation of Cr. Oxid Met. 1975;9:459. doi:10.1007/BF00611694
  • K Lillerud, P Kofstad (1980) On high temperature oxidation of chromium: I. oxidation of annealed, thermally etched chromium at 800°–1100°C. J Electrochem Soc 127: 2397. doi:10.1149/1.2129478