Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 11
1,064
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study on hydrogen smelting reduction behaviour in synthetic molten HIsarna slag

, ORCID Icon, , , &
Pages 1590-1600 | Received 30 Nov 2022, Accepted 13 Apr 2023, Published online: 01 May 2023

References

  • Souza Filho IR, Ma Y, Kulse M, et al. Sustainable steel through hydrogen plasma reduction of iron ore: process, kinetics, microstructure, chemistry. Acta Mater. 2021;213:116971, doi:10.1016/j.actamat.2021.116971.
  • European Climate Law (no date). Climate action. [cited October 21, 2022]. Available from: https://climate.ec.europa.eu/eu-action/european-green-deal/european-climate-law_en.
  • Soni KN, Thakkar JR. Hydrogen Plasma Smelting Reduction: An Option for Steelmaking In The Future. Int J Res Appl Sci Eng Technol (IJRASET). 2017;5(9):839–848. doi:10.22214/ijraset.2017.9124.
  • Hasanbeigi A, Arens M, Price L. Renew Sustain Energ Rev. 2014;33:645–658. doi:10.1016/j.rser.2014.02.031.
  • Junjie Y. Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU. Int J Mineral Process Extractive Metall. 2018;3(2):15–22. doi:10.11648/j.ijmpem.20180302.11.
  • Bellevrat E, Menanteau P. Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling. Revue de Métallurgie. 2009;9:318–324. doi:10.1051/metal/2009059.
  • Meijer K, Zeilstra C, Teerhuis C, et al. Developments in alternative ironmaking. Trans Indian Inst Met. 2013;66:475–481. doi:10.1007/s12666-013-0309-z.
  • Van der Stel J, Meijier K, Santos S, et al. (2017). Hisarna, an opportunity for reducing CO2 emissions from steel industry.
  • Pei M, Petajaniemi M, Regnell A, et al. Toward a fossil free future with HYBRIT: development of iron and steelmaking technology in Sweden and Finland. Metals. 2020;10(7):972, doi:10.3390/met10070972.
  • Tang J, Chu M, Li F, et al. Development and progress on hydrogen metallurgy. Int J Minerals, Metallurgy Mater. 2020;27(6):713–723. doi:10.1007/s12613-020-2021-4.
  • Kawasaki E, Sanscrainte J, Walsh TJ. Kinetics of reduction of iron oxide with carbon monoxide and hydrogen. AIChE J. 1962;8(1):48–52. doi:10.1002/aic.690080114.
  • Lin H-Y, Chen Y-W, Li C. The mechanism of reduction of iron oxide by hydrogen. Thermochim Acta. 2003;400(1–2):61–67. doi:10.1016/S0040-6031(02)00478-1.
  • Qie Y, Lyu Q, Li J, et al. Effect of hydrogen addition on reduction kinetics of iron oxides in Gas-injection BF. ISIJ Int. 2017;57(3):404–412. doi:10.2355/isijinternational.ISIJINT-2016-356.
  • Ban-ya S, Iguchi Y, Nagasaka T. Rate of reduction of liquid wustite with hydrogen. Tetsu-to-Hagane. 1984;70(14):1689–1696. doi:10.2355/tetsutohagane1955.70.14_1689.
  • Nagasaka T, Hino M, Ban-Ya S. Interfacial kinetics of hydrogen with liquid slag containing iron oxide. Metall Mater Trans B. 2000;31(5):945–955. doi:10.1007/s11663-000-0071-6.
  • Naseri Seftejani M, Schenk J, Zarl MA. Reduction of haematite using hydrogen thermal plasma. Materials. 2019;12(10):1608, doi:10.3390/ma12101608.
  • Kamiya K, Kitahara N, Morinaka I, et al. Reduction of molten iron oxide and FeO bearing slags by H2-Ar plasma. Trans Iron Steel Inst Japan. 1984;24(1):7–16.
  • Khasraw D, Yan Z, Hage JLT, et al. Reduction of FeO in molten slag by solid carbonaceous materials for HIsarna alternative ironmaking process. Metall Mater Trans B. 2022;53(5):3246–3261. doi:10.1007/s11663-022-02603-5.
  • Htet T, Yan Z, Khasraw D, et al. Metall Mater Trans B. 2022;54:868–879.
  • Fruehan RJ, Martonik LJ. The rate of decarburization of liquid iron by CO2 and H2. Metall Mater Trans B. 1974;5(5):1027–1032. doi:10.1007/BF02644314.
  • Seetharaman S, McLean A, Guthrie R, et al. Treatise on process metallurgy. Oxford: Elsevier; 2014, pp.143–177.
  • Sasai K, Mizukami Y. Oxidation rate of molten steel by argon Gas blowing in tundish oxidizing atmosphere. ISIJ Int. 2011;51(7):1119–1125. doi:10.2355/isijinternational.51.1119.
  • Gunji K. Kinetics of decarburization of liquid iron in an oxidizing atmosphere. Trans Iron Steel Inst Japan. 1970;10(1):1–12. doi:10.2355/isijinternational1966.10.1.
  • Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.
  • Bamford CH, Tipper CFH. Comprehensive chemical kinetics: reactions in the solid state. 1980;22:41–71.
  • Huaiwei Z, Xiaoyan S, Bo Z, et al. Reduction of molten copper slags with mixed CO-CH4-Ar Gas. Metall Mater Trans B. 2013;45(2):582–589. doi:10.1007/s11663-013-9981-y.
  • Ouyang K, Dou Z, Zhang T, et al. J Min Metall Sect B. 2019;55(2):187–196. doi:10.2298/JMMB190121026Y.
  • Li B, Wang X, Wang H, et al. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil. Sci Rep. 2017;7(1):2406, doi:10.1038/s41598-017-02696-y.
  • Mishra K, Kapoor M. Kinetics of liquid-gas reactions through bubbles. Hydrometallurgy. 1978;3(1):75–83. doi:10.1016/0304-386X(78)90008-7.
  • Gulliver J. Introduction to chemical transport in the environment. Cambridge: Cambridge University Press; 2012, pp.213–215.
  • Mills K. Southern African Pyometallurgy. 2011;52:1–56.
  • Subramanian R. Convective Mass Transfer, 2022. [online] Web2.clarkson.edu. [cited 22 September 2022]. Available from: <https://web2.clarkson.edu/projects/subramanian/ch330/notes/Convective%20Mass%20Transfer.pdf>.