Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 11
193
Views
6
CrossRef citations to date
0
Altmetric
Articles

Scrap steel price forecasting with neural networks for east, north, south, central, northeast, and southwest China and at the national level

&
Pages 1683-1697 | Received 20 Mar 2023, Accepted 21 May 2023, Published online: 09 Jun 2023

References

  • Foldes L. Iron and steel prices. Economica. 1956;23(92):344–356. doi:10.2307/2551460
  • Li B, Ding J, Yin Z, et al. Optimized neural network combined model based on the induced ordered weighted averaging operator for vegetable price forecasting. Expert Syst Appl. 2021;168:114232. doi:10.1016/j.eswa.2020.114232
  • Xu X. Short-run price forecast performance of individual and composite models for 496 corn cash markets. J Appl Stat. 2017;44(14):2593–2620. 10.1080/02664763.2016.1259399
  • Cooney S. Steel: price and policy issues. 2007.
  • Drachal K, Pawłowski M. A review of the applications of genetic algorithms to forecasting prices of commodities. Economies. 2021;9(1):6. doi:10.3390/economies9010006
  • Xu X. Using local information to improve short-run corn price forecasts. J Agric Food Ind Organ. 2018;16:20170018. doi:10.1515/jafio-2017-0018.
  • Yin H, Jin D, Gu YH, et al. Stl-attlstm vegetable price forecasting using stl and attention mechanism-based lstm. Agriculture. 2020;10(12):612. doi:10.3390/agriculture10120612
  • Robles M, Torero M, Von Braun J. When speculation matters. Technical Report. 2009.
  • Xu X, Zhang Y. An integrated vector error correction and directed acyclic graph method for investigating contemporaneous causalities. Decis Anal J. 2023;7:100229. doi:10.1016/j.dajour.2023.100229
  • Chapoto A, Jayne TS. The impacts of trade barriers and market interventions on maize price predictability: evidence from Eastern and Southern Africa. Technical Report. 2009. doi:10.22004/ag.econ.56798
  • Milford RL, Pauliuk S, Allwood JM, et al. The roles of energy and material efficiency in meeting steel industry CO2 targets. Environ Sci Technol. 2013;47(7):3455–3462. doi:10.1021/es3031424
  • Xu X, Zhang Y. Network analysis of price comovements among corn futures and cash prices. J Agric Food Ind Organ. 2022. doi:10.1515/jafio-2022-0009
  • Dacha K, Cherukupalli R, Sinha A. Food index forecasting, in: Applied Advanced Analytics. Springer; 2021. p. 125–134. doi:10.1007/978-981-33-6656-5_11
  • Forestal RL, Pi S-M. Using artificial neural networks and optimal scaling model to forecast agriculture commodity price: an ecological-economic approach. Adv Manag Appl Econ. 2021;11:29–55.
  • Ilmark S. Market forecast for stainless steel. Metallurgist. 2013;56(11-12):883–887. doi:10.1007/s11015-013-9668-2
  • Zhou K, Yang S. Emission reduction of China's steel industry: progress and challenges. Renew Sustain Energy Rev. 2016;61:319–327. doi:10.1016/j.rser.2016.04.009
  • Xuan Y, Yue Q. Forecast of steel demand and the availability of depreciated steel scrap in China. Resour Conserv Recycl. 2016;109:1–12. doi:10.1016/j.resconrec.2016.02.003
  • Xu X, Zhang Y. Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products. Min Econ. 2022;1–20. doi:10.1007/s13563-022-00357-9
  • Yin X, Chen W. Trends and development of steel demand in China: a bottom–up analysis. Resour Policy. 2013;38(4):407–415. doi:10.1016/j.resourpol.2013.06.007
  • Lin B, Wang X. Exploring energy efficiency in China's iron and steel industry: a stochastic frontier approach. Energy Policy. 2014;72:87–96. doi:10.1016/j.enpol.2014.04.043
  • Song L, Wang P, Hao M, et al. Mapping provincial steel stocks and flows in China: 1978–2050. J Clean Prod. 2020;262:121393. doi:10.1016/j.jclepro.2020.121393
  • Wang M, Tian Y, Liang Y, et al. Forecast scrap generation and emission reduction of China's steel industry. In: International Conference on Management Science and Engineering Management, Springer; 2019. p. 283–292. doi:10.1007/978-3-030-21248-3_21
  • Liu Y, Li H, Guan J, et al. Influence of different factors on prices of upstream, middle and downstream products in China's whole steel industry chain: based on adaptive neural fuzzy inference system. Resour Policy. 2019;60:134–142. doi:10.1016/j.resourpol.2018.12.009
  • Mele M, Magazzino C. A machine learning analysis of the relationship among iron and steel industries, air pollution, and economic growth in China. J Cleaner Prod. 2020;277:123293.
  • Kim K, Lim S. Price discovery and volatility spillover in spot and futures markets: evidences from steel-related commodities in China. Appl Econ Lett. 2019;26(5):351–357. doi:10.1080/13504851.2018.1478385
  • Arık E, Mutlu E. Chinese steel market in the post-futures period. Resour Policy. 2014;42:10–17.
  • Indriawan I, Liu Q, Tse Y. Market quality and the connectedness of steel rebar and other industrial metal futures in China. J Futures Mark. 2019;39(11):1383–1393. doi:10.1002/fut.22001
  • Morfeldt J, Nijs W, Silveira S. The impact of climate targets on future steel production–an analysis based on a global energy system model. J Clean Prod. 2015;103:469–482. doi:10.1016/j.jclepro.2014.04.045
  • Labson BS. Changing patterns of trade in the world iron ore and steel market: an econometric analysis. J Policy Model. 1997;19(3):237–251. doi:10.1016/S0161-8938(96)00049-X
  • Guo Z, Fu Z. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China. Energy. 2010;35(11):4356–4360. doi:10.1016/j.energy.2009.04.008
  • Lin B, Wang X. Carbon emissions from energy intensive industry in China: evidence from the iron & steel industry. Renew Sust Energ Rev. 2015;47:746–754. doi:10.1016/j.rser.2015.03.056
  • Lin B, Wu Y, Zhang L. Estimates of the potential for energy conservation in the Chinese steel industry. Energy Policy. 2011;39(6):3680–3689. doi:10.1016/j.enpol.2011.03.077
  • Wang T, Tian X, Hashimoto S, et al. Concrete transformation of buildings in China and implications for the steel cycle. Resour Conserv Recycl. 2015;103:205–215. doi:10.1016/j.resconrec.2015.07.021
  • Chan S, Han G, Zhang W. How strong are the linkages between real estate and other sectors in China?Res Int Bus Finance. 2016;36:52–72. doi:10.1016/j.ribaf.2015.09.018
  • Zhu X, Lin S, Wang L, et al. A study of the debt of real estate-related industries. In: A study of the turning point of China's debt, Springer; 2018. p. 123–163. doi:10.1007/978-981-13-1325-7_6
  • Wang P, Li W, Kara S. Cradle-to-cradle modeling of the future steel flow in China. Res Conserv Recycl. 2017;117:45–57. doi:10.1016/j.resconrec.2015.07.009
  • Hu M, Pauliuk S, Wang T, et al. Iron and steel in Chinese residential buildings: a dynamic analysis. Resour Conserv Recycl. 2010;54(9):591–600. doi:10.1016/j.resconrec.2009.10.016
  • Hasanbeigi A, Jiang Z, Price L. Retrospective and prospective analysis of the trends of energy use in Chinese iron and steel industry. J Clean Prod. 2014;74:105–118. doi:10.1016/j.jclepro.2014.03.065
  • Andrikopoulos A, Merika A, Merikas A, et al. The dynamics of fleet size and shipping profitability: the role of steel-scrap prices. Marit Policy Manag. 2020;47(8):985–1009. doi:10.1080/03088839.2020.1735007
  • Benjamin C, Houee-Bigot M, Tavera C. What are the long-term drivers of food prices? Investigating improvements in the accuracy of prediction intervals for the forecast of food prices. Technical Report, 2009. doi:10.22004/ag.econ.49436
  • Negri P, Ramos P, Breitkopf M. Regional commodities price volatility assessment using self-driven recurrent networks. In: Iberoamerican Congress on Pattern Recognition, Springer; 2021. p. 361–370. doi:10.1007/978-3-030-93420-0_34
  • Serra T, Gil JM. Price volatility in food markets: can stock building mitigate price fluctuations? Eur Rev Agric Econ. 2013;40(3):507–528. doi:10.1093/erae/jbs041
  • Xu X. Contemporaneous causal orderings of us corn cash prices through directed acyclic graphs. Empir Econ. 2017;52(2):731–758. doi:10.1007/s00181-016-1094-4
  • Yeasin M, Singh K, Lama A, et al. Modelling volatility influenced by exogenous factors using an improved garch-x model. J Ind Soc Agric Stat. 2020;74:209–216.
  • Xu X. Corn cash price forecasting. Am J Agric Econ. 2020;102(4):1297–1320. doi:10.1002/ajae.12041
  • Gurung B, Singh K, Paul RK, et al. An alternative method for forecasting price volatility by combining models. Commun Stat Simul Comput. 2017;46(6):4627–4636. doi:10.1080/03610918.2015.1124115
  • Xu Y, Xia Z, Wang C, et al. An empirical analysis of the price volatility characteristics of China's soybean futures market based on arima-gjr-garch model. J Math. 2021;2021:7765325.
  • Elfahham Y. Estimation and prediction of construction cost index using neural networks, time series, and regression. Alex Eng J. 2019;58(2):499–506. doi:10.1016/j.aej.2019.05.002
  • Roache MSK. What explains the rise in food price volatility? International Monetary Fund; 2010.
  • Xu X, Thurman WN. Using local information to improve short-run corn cash price forecasts. 2015. doi:10.22004/ag.econ.285845
  • Andreyeva T, Long MW, Brownell KD. The impact of food prices on consumption: a systematic review of research on the price elasticity of demand for food. Am J Public Health. 2010;100(2):216–222. doi:10.2105/AJPH.2008.151415
  • Xu X. Price discovery in us corn cash and futures markets: the role of cash market selection. 2014. doi:10.22004/ag.econ.169809
  • Xu Z, Deng H, Wu Q. Prediction of soybean price trend via a synthesis method with multistage model. Int J Agric Environ Inform Syst (IJAEIS). 2021;12(4):1–13. doi:10.4018/IJAEIS.20211001.oa1
  • Schroeter C, Lusk J, Tyner W. Determining the impact of food price and income changes on body weight. J Health Econ. 2008;27(1):45–68. doi:10.1016/j.jhealeco.2007.04.001
  • Abbott PC, Hurt C, Tyner WE. What's driving food prices? March 2009 update. Technical Report. 2009. doi:10.22004/ag.econ.48495
  • Xu X. Contemporaneous and granger causality among us corn cash and futures prices. Eur Rev Agric Econ. 2019;46(4):663–695. doi:10.1093/erae/jby036
  • Abbott P, Borot de Battisti A. Recent global food price shocks: causes, consequences and lessons for african governments and donors. J Afr Econ. 2011;20(Supplement 1):i12–i62. doi:10.1093/jae/ejr007
  • Xu X. Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach. Financial Mark Portf Manag. 2019;33(2):155–181. doi:10.1007/s11408-019-00330-7
  • Kling JL, Bessler DA. A comparison of multivariate forecasting procedures for economic time series. Int J Forecast. 1985;1(1):5–24. doi:10.1016/S0169-2070(85)80067-4
  • Bessler DA. Adaptive expectations the exponentially weighted forecast, and optimal statistical predictors: A revisit. Agric Econ Res. 1982;34:16–23. doi:10.22004/ag.econ.148819
  • Xu X, Thurman W. Forecasting local grain prices: an evaluation of composite models in 500 corn cash markets, 2015. doi:10.22004/ag.econ.205332
  • Brandt JA, Bessler DA. Composite forecasting: an application with us hog prices. Am J Agric Econ. 1981;63(1):135–140. doi:10.2307/1239819
  • Bessler DA, Chamberlain PJ. Composite forecasting with dirichlet priors. Decis Sci. 1988;19(4):771–781. doi:10.1111/j.1540-5915.1988.tb00302.x
  • Xu X, Zhang Y. House price information flows among some major Chinese cities: linear and nonlinear causality in time and frequency domains. Int J Hous Mark Anal. 2022. doi:10.1108/IJHMA-07-2022-0098
  • McIntosh CS, Bessler DA. Forecasting agricultural prices using a bayesian composite approach. J Agric Appl Econ. 1988;20(2):73–80. doi:10.1017/S0081305200017611
  • Bessler DA, Brandt JA. Forecasting livestock prices with individual and composite methods. Appl Econ. 1981;13(4):513–522. doi:10.1080/00036848100000016
  • Xu X, Zhang Y. Contemporaneous causality among regional steel price indices of east, south, north, central south, northeast, southwest, and northwest China. Miner Econ. 2023;1:1. doi:10.1007/s13563-023-00380-4
  • Bessler DA. Forecasting multiple time series with little prior information. Am J Agric Econ. 1990;72(3):788–792. doi:10.2307/1243059
  • Bessler DA, Babula RA. Forecasting wheat exports: do exchange rates matter? J Bus Econ Stat. 1987;5:397–406. doi:10.2307/1391615
  • Xu X, Zhang Y. Dynamic relationships among composite property prices of major Chinese cities: contemporaneous causality through vector error corrections and directed acyclic graphs. Int J Real Estate Stud. 2023.
  • Brandt JA, Bessler DA. Forecasting with a dynamic regression model: a heuristic approach. North Cent J Agric Econ. 1982;4:27–33. doi:10.2307/1349096
  • Brandt JA, Bessler DA. Forecasting with vector autoregressions versus a univariate arima process: an empirical example with us hog prices. North Cent J Agric Econ. 1984;4:29–36. doi:10.2307/1349248
  • Xu X. Causality, price discovery, and price forecasts: evidence from us corn cash and futures markets. 2015.
  • Brandt JA, Bessler DA. Price forecasting and evaluation: an application in agriculture. J Forecast. 1983;2(3):237–248. doi:10.1002/for.3980020306
  • Yang J, Haigh MS, Leatham DJ. Agricultural liberalization policy and commodity price volatility: a garch application. Appl Econ Lett. 2001;8(9):593–598. doi:10.1080/13504850010018734
  • Bessler DA, Yang J, Wongcharupan M. Price dynamics in the international wheat market: modeling with error correction and directed acyclic graphs. J Reg Sci. 2003;43(1):1–33. doi:10.1111/1467-9787.00287
  • Bessler DA, Brandt JA. An analysis of forecasts of livestock prices. J Econ Behav Organ. 1992;18(2):249–263. doi:10.1016/0167-2681(92)90030-F
  • Bessler DA, Hopkins JC. Forecasting an agricultural system with random walk priors. Agric Syst. 1986;21(1):59–67. doi:10.1016/0308-521X(86)90029-6
  • Chen DT, Bessler DA. Forecasting monthly cotton price: structural and time series approaches. Int J Forecast. 1990;6(1):103–113. doi:10.1016/0169-2070(90)90101-G
  • Wang Z, Bessler DA. Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination. Int J Forecast. 2004;20(4):683–695. doi:10.1016/j.ijforecast.2004.01.002
  • Chen DT, Bessler DA. Forecasting the us cotton industry: structural and time series approaches. In: Proceedings of the NCR-134 Conference on Applied Commodity Price Analysis. Forecasting, and Market Risk Management, Chicago Mercantile Exchange. Chicago: 1987. doi:10.22004/ag.econ.285463
  • Bessler DA, Kling JL. Forecasting vector autoregressions with bayesian priors. Am J Agric Econ. 1986;68(1):144–151. doi:10.2307/1241659
  • Babula RA, Bessler DA, Reeder J, et al. Modeling us soy-based markets with directed acyclic graphs and bernanke structural var methods: the impacts of high soy meal and soybean prices. J Food Distrib Res. 2004;35:29–52. doi:10.22004/ag.econ.27559
  • Xu X. Cointegration and price discovery in us corn markets. In: Agricultural and resource economics seminar series, North Carolina State University; 2014. doi:10.13140/RG.2.2.30153.49768
  • Yang J, Zhang J, Leatham DJ. Price and volatility transmission in international wheat futures markets. Ann Econ Financ. 2003;4:37–50. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.2182/&rep=rep1/&type=pdf.
  • Awokuse TO, Yang J. The informational role of commodity prices in formulating monetary policy: a reexamination. Econ Lett. 2003;79(2):219–224. doi:10.1016/S0165-1765(02)00331-2
  • Yang J, Awokuse TO. Asset storability and hedging effectiveness in commodity futures markets. Appl Econ Lett. 2003;10(8):487–491. doi:10.1080/1350485032000095366
  • Yang J, Leatham DJ. Market efficiency of us grain markets: application of cointegration tests. Agribus: An Int J. 1998;14:107–112.
  • Yang J, Li Z, Wang T. Price discovery in Chinese agricultural futures markets: a comprehensive look. J Futures Mark. 2021;41(4):536–555. doi:10.1002/fut.22179
  • Wang J, Dharmasena S, Bessler DA. Price dynamics and forecasts of world and China vegetable oil markets. 2013. doi:10.22004/ag.econ.151150
  • Xu X, Zhang Y. Cointegration between housing prices: evidence from one hundred Chinese cities. J Prop Res. 2023;40(1):53–75. doi:10.1080/09599916.2022.2114926
  • Ma Y. Do iron ore scrap steel, carbon emission allowance, and seaborne transportation prices drive steel price fluctuations? Resour Policy. 2021;72:102115. doi:10.1016/j.resourpol.2021.102115
  • Ma Y, Wang J. Time-varying spillovers and dependencies between iron ore scrap steel, carbon emission, seaborne transportation, and China's steel stock prices. Resour Policy. 2021;74:102254. doi:10.1016/j.resourpol.2021.102254
  • Hardin K. Factors affecting forecast accuracy of scrap price in the US Steel Industry [dissertation]. Walden University; 2011.
  • Albertson K, Aylen J. Forecasting using a periodic transfer function: with an application to the uk price of ferrous scrap. Int J Forecast. 1999;15(4):409–419. doi:10.1016/S0169-2070(99)00020-5
  • Adli KA, Sener U. Forecasting of the us steel prices with lvar and vec models. Bus Econ Res J. 2021;12(3):509–522. doi:10.20409/berj.2021.335
  • Malanichev A. System for scenario planning and forecasting world prices for steel and metallurgical raw materials. Stud Russ Econ Dev. 2014;25(3):251–258. doi:10.1134/S1075700714030071
  • Albertson K, Aylen J. Modelling the great lakes freeze: forecasting and seasonality in the market for ferrous scrap. Int J Forecast. 1996;12(3):345–359. doi:10.1016/0169-2070(96)00669-3
  • Xiarchos IM, Fletcher JJ. Price and volatility transmission between primary and scrap metal markets. Resour Conserv Recycl. 2009;53(12):664–673. doi:10.1016/j.resconrec.2009.04.020
  • Zhang Y, Xu X. Gaussian process modeling of doped-lanthanum manganites curie temperature from compositions and ionic radii. Solid State Commun. 2023;360:115025. doi:10.1016/j.ssc.2022.115025
  • Xu X, Zhang Y. High-frequency csi300 futures trading volume predicting through the neural network. Asian J Econ Bank. 2023. doi:10.1108/AJEB-05-2022-0051
  • dos Reis Filho IJ, Correa GB, Freire GM, et al. Forecasting future corn and soybean prices: an analysis of the use of textual information to enrich time-series. In: Anais do VIII Symposium on Knowledge Discovery, Mining and Learning, SBC, 2020. p. 113–120. doi:10.5753/kdmile.2020.11966
  • Li J, Li G, Liu M, et al. A novel text-based framework for forecasting agricultural futures using massive online news headlines. Int J Forecast. 2020;38(1):35–50. doi:10.1016/j.ijforecast.2020.02.002.
  • Yoosefzadeh-Najafabadi M, Earl HJ, Tulpan D, et al. Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean. Front Plant Sci. 2021;11:2169. doi:10.3389/fpls.2020.624273
  • Ribeiro MHD, dos Santos Coelho L. Ensemble approach based on bagging boosting and stacking for short-term prediction in agribusiness time series. Appl Soft Comput. 2020;86:105837. doi:10.1016/j.asoc.2019.105837
  • Zhao H. Futures price prediction of agricultural products based on machine learning. Neural Comput Appl. 2021;33(3):837–850. doi:10.1007/s00521-020-05250-6
  • Jiang F, He J, Zeng Z. Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices. Sci China Inf Sci. 2019;62:1–19. doi:10.1007/s11432-018-9714-5
  • Handoyo S, Chen YP. The developing of fuzzy system for multiple time series forecasting with generated rule bases and optimized consequence part. SSRG Int J Eng Trends Technol. 2020;68(12):118–122. doi:10.14445/22315381/IJETT-V68I12P220
  • Silalahi DD. Application of neural network model with genetic algorithm to predict the international price of crude palm oil (cpo) and soybean oil (sbo), In: 12th National Convention on Statistics (NCS), Philippine: Mandaluyong City; 2013. p. 1–2.
  • Xu X, Zhang Y. Canola and soybean oil price forecasts via neural networks. Adv Comput Intell. 2022;2(5):32. doi:10.1007/s43674-022-00045-9
  • Li G, Chen W, Li D, et al. Comparative study of short-term forecasting methods for soybean oil futures based on lstm, svr, es and wavelet transformation, In: Journal of Physics: Conference Series, Vol. 1682, IOP Publishing; 2020. p. 012007. doi:10.1088/1742-6596/1682/1/012007
  • Kanchymalay K, Salim N, Sukprasert A, et al. Multivariate time series forecasting of crude palm oil price using machine learning techniques. In: IOP Conference Series: Materials Science and Engineering, Vol. 226, IOP Publishing; 2017. p. 012117. doi:10.1088/1757-899X/226/1/012117
  • Surjandari I, Naffisah MS, Prawiradinata MI. Text mining of twitter data for public sentiment analysis of staple foods price changes. J Ind Intell Inf. 2015;3:253–257. doi:10.12720/jiii.3.3.253-257.
  • Ribeiro CO, Oliveira SM. A hybrid commodity price-forecasting model applied to the sugar–alcohol sector. Aust J Agric Resour Econ. 2011;55(2):180–198.
  • Zhang J, Meng Y, Wei J, et al. A novel hybrid deep learning model for sugar price forecasting based on time series decomposition. Math Prob Eng. 2021;2021:1. doi:10.1155/2021/6507688
  • Melo Bd., Milioni AZ, Nascimento Júnior CL. Daily and monthly sugar price forecasting using the mixture of local expert models. Pesq Oper. 2007;27(2):235–246. doi:10.1590/S0101-74382007000200003
  • de Melo B, Júnior CN, Milioni AZ. Daily sugar price forecasting using the mixture of local expert models. WIT Trans Inf Commun Technol. 2004;33:231–240. doi:10.2495/DATA040221.
  • Silva N, Siqueira I, Okida S, et al. Neural networks for predicting prices of sugarcane derivatives. Sugar Tech. 2019;21(3):514–523. doi:10.1007/s12355-018-0648-5
  • Xu X, Zhang Y. Corn cash price forecasting with neural networks. Comput Electron Agric. 2021;184:106120. doi:10.1016/j.compag.2021.106120
  • Mayabi TW. An artificial neural network model for predicting retail maize prices in Kenya [dissertation] University of Nairobi; 2019.
  • Xu X, Zhang Y. Corn cash-futures basis forecasting via neural networks. Adv Comput Intell. 2023;3(2):8. doi:10.1007/s43674-023-00054-2
  • Moreno RS, Salazar OZ. An artificial neural network model to analyze maize price behavior in mexico. Appl Math (Irvine). 2018;09(05):473–487. doi:10.4236/am.2018.95034
  • Xu X, Zhang Y. Yellow corn wholesale price forecasts via the neural network. EconomiA. 2023. doi:10.1108/ECON-05-2022-0026
  • Zelingher R, Makowski D, Brunelle T. Assessing the sensitivity of global maize price to regional productions using statistical and machine learning methods. Front Sustain Food Syst. 2021;5:171. doi:10.3389/fsufs.2021.655206
  • Shahhosseini M, Hu G, Huber I, et al. Coupling machine learning and crop modeling improves crop yield prediction in the us corn belt. Sci Rep. 2021;11(1):1–15. doi:10.1038/s41598-020-80820-1
  • Shahhosseini M, Hu G, Archontoulis S. Forecasting corn yield with machine learning ensembles. Front Plant Sci. 2020;11:1120. doi:10.3389/fpls.2020.01120
  • Zelingher R, Makowski D, Brunelle T. Forecasting impacts of agricultural production on global maize price. 2020.
  • M. Ribeiro MHD, Ribeiro VHA, Reynoso-Meza G, et al. Multi-objective ensemble model for short-term price forecasting in corn price time series. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE; 2019. p. 1–8. doi:10.1109/IJCNN.2019.8851880
  • Ayankoya K, Calitz AP, Greyling JH. Using neural networks for predicting futures contract prices of white maize in south africa, In: Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. 2016. p. 1–10. doi:10.1145/2987491.2987508
  • Wan H, Zhou Y. Neural network model comparison and analysis of prediction methods using arima and lstm models. In: 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), IEEE; 2021. p. 640–643. doi:10.1109/AEECA52519.2021.9574427
  • Antwi E, Gyamfi EN, Kyei KA, et al. Modeling and forecasting commodity futures prices: decomposition approach. IEEE Access. 2022;10:27484–27503. doi:10.1109/ACCESS.2022.3152694
  • Fang Y, Guan B, Wu S, et al. Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. J Forecast. 2020;39(6):877–886. doi:10.1002/for.2665
  • Kohzadi N, Boyd MS, Kermanshahi B, et al. A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing. 1996;10(2):169–181. doi:10.1016/0925-2312(95)00020-8
  • Zou H, Xia G, Yang F, et al. An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing. 2007;70(16-18):2913–2923. doi:10.1016/j.neucom.2007.01.009
  • Rasheed A, Younis MS, Ahmad F, et al. District wise price forecasting of wheat in pakistan using deep learning. arXiv preprint arXiv:2103.04781. 2021.
  • Khamis A, Abdullah S. Forecasting wheat price using backpropagation and narx neural network. Int J Eng Sci. 2014;3:19–26.
  • Dias J, Rocha H. Forecasting wheat prices based on past behavior: comparison of different modelling approaches, In: International Conference on Computational Science and Its Applications. Springer; 2019. p. 167–182. doi:10.1007/978-3-030-24302-9_13
  • Gómez D, Salvador P, Sanz J, et al. Modelling wheat yield with antecedent information, satellite and climate data using machine learning methods in mexico. Agric Forest Meteorol. 2021;300:108317. doi:10.1016/j.agrformet.2020.108317
  • Bakhtadze N, Maximov E, Maximova N. Local wheat price prediction models. In: 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE), IEEE; 2021. p. 223–227. doi:10.1109/ICCSSE52761.2021.9545154
  • Kouadio L, Deo RC, Byrareddy V, et al. Artificial intelligence approach for the prediction of robusta coffee yield using soil fertility properties. Comput Electron Agric. 2018;155:324–338. doi:10.1016/j.compag.2018.10.014
  • Abreham Y. Coffee price prediction using machine-learning techniques [dissertation] ASTU, 2019.
  • HUY HT, THAC HN, THU HNT, et al. Econometric combined with neural network for coffee price forecasting. J Appl Econ Sci. 2019;14:378–392.
  • Degife WA, Sinamo A. Efficient predictive model for determining critical factors affecting commodity price: the case of coffee in ethiopian commodity exchange (ecx). Int J Inf Eng Electron Bus. 2019;11:32–36. doi:10.5815/ijieeb.2019.06.05
  • Naveena K, Subedar S. Hybrid time series modelling for forecasting the price of washed coffee (arabica plantation coffee) in india, International Journal of Agriculture Sciences, ISSN (2017) p. 0975–3710.
  • Lopes LP. Prediction of the brazilian natural coffee price through statistical machine learning models. SIGMAE. 2018;7:1–16.
  • Deina C, do Amaral Prates MH, Alves CHR, et al. A methodology for coffee price forecasting based on extreme learning machines. Inf Process Agric. 2021;1:1. doi:10.1016/j.inpa.2021.07.003
  • Harris JJ. A machine learning approach to forecasting consumer food prices. 2017.
  • Ali M, Deo RC, Downs NJ, et al. Cotton yield prediction with Markov chain monte Carlo-based simulation model integrated with genetic programing algorithm: a new hybrid copula-driven approach. Agric For Meteorol. 2018;263:428–448. doi:10.1016/j.agrformet.2018.09.002
  • Shahwan T, Odening M. Forecasting agricultural commodity prices using hybrid neural networks, In: Computational intelligence in economics and finance. Springer; 2007. p. 63–74. doi:10.1007/978-3-540-72821-4_3
  • Filippi P, Jones EJ, Wimalathunge NS, et al. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis Agric. 2019;20(5):1015–1029. doi:10.1007/s11119-018-09628-4
  • Wen G, Ma B-L, Vanasse A, et al. Machine learning-based canola yield prediction for site-specific nitrogen recommendations. Nutr Cycling Agroecosyst. 2021;121(2-3):241–256. doi:10.1007/s10705-021-10170-5
  • Singh A, Mishra G. Application of box-jenkins method and artificial neural network procedure for time series forecasting of prices. Stat Transit New Series. 2015;16(1):83–96.
  • Mishra G, Singh A. A study on forecasting prices of groundnut oil in delhi by arima methodology and artificial neural networks. Agris on-line Pap Econ Inf. 2013;5:25–34. doi:10.22004/ag.econ.157527
  • Zong J, Zhu Q. Price forecasting for agricultural products based on bp and rbf neural network. In: 2012 IEEE International Conference on Computer Science and Automation Engineering, IEEE; 2012. p. 607–610. doi:10.1109/ICSESS.2012.6269540
  • Yin Y, Zhu Q. Effect of magnitude differences in the raw data on price forecasting using rbf neural network, In: 2012 11th International Symposium on Distributed Computing and Applications to Business, Engineering & Science. IEEE; 2012. p. 237–240. doi:10.1109/DCABES.2012.19
  • Zong J, Zhu Q. Apply grey prediction in the agriculture production price. In: 2012 Fourth International Conference on Multimedia Information Networking and Security. IEEE; 2012. p. 396–399. doi:10.1109/MINES.2012.78
  • Quan-Yin Z, Yong-Hu Y, Yun-Yang Y, et al. A novel efficient adaptive sliding window model for week-ahead price forecasting. TELKOMNIKA Indones J Electr Eng. 2014;12:2219–2226. doi:10.11591/telkomnika.v12i3.4490
  • Zhu Q-Y, Yin Y-H, Zhu H-J, et al. Effect of magnitude differences in the original data on price forecasting. J Algorithm Comput Technol. 2014;8(4):389–420. doi:10.1260/1748-3018.8.4.389
  • Xiong T, Li C, Bao Y. Seasonal forecasting of agricultural commodity price using a hybrid stl and elm method: evidence from the vegetable market in China. Neurocomputing. 2018;275:2831–2844. doi:10.1016/j.neucom.2017.11.053
  • Li Y, Li C, Zheng M. A hybrid neural network and h-p filter model for short-term vegetable price forecasting. Math Prob Eng. 2014;2014:135862. doi:10.1155/2014/135862.
  • Myat AK, Tun MTZ. Predicting palm oil price direction using random forest. In: 2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE). IEEE; 2019. p. 1–6. doi:10.1109/ICTKE47035.2019.8966799
  • Singh A. Comparison of artificial neural networks and statistical methods for forecasting prices of different edible oils in indian markets. Int Res J Modern Eng Technol Sci. 2021;3:1044–1050.
  • Lama A, Jha GK, Gurung B, et al. A comparative study on time-delay neural network and garch models for forecasting agricultural commodity price volatility. 2016.
  • Jaiswal R, Jha GK, Kumar RR, et al. Deep long short-term memory based model for agricultural price forecasting. Neural Comput Appl. 2022;34(6):4661–4676. doi:10.1007/s00521-021-06621-3
  • Gollou AR, Ghadimi N. A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets. J Intell Fuzzy Syst. 2017;32(6):4031–4045. doi:10.3233/JIFS-152073
  • Saâdaoui F. A seasonal feedforward neural network to forecast electricity prices. Neural Comput Appl. 2017;28(4):835–847. doi:10.1007/s00521-016-2356-y
  • Zou Y, Tu M, Teng X, et al. Electricity price forecast based on stacked autoencoder in spot market environment. In: 2019 9th International Conference on Power and Energy Systems (ICPES). IEEE; 2019. p. 1–6. doi:10.1109/ICPES47639.2019.9105616
  • Abhinav R, Pindoriya NM. Electricity price forecast for optimal energy management for wind power producers: a case study in indian power market, in: 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). IEEE; 2018. p. 1233–1238. doi:10.1109/ISGT-Asia.2018.8467870
  • Abedinia O, Amjady N, Shafie-Khah M, et al. Electricity price forecast using combinatorial neural network trained by a new stochastic search method. Energy Conv Manag. 2015;105:642–654. doi:10.1016/j.enconman.2015.08.025
  • Sun G, Chen T, Wei Z, et al. A carbon price forecasting model based on variational mode decomposition and spiking neural networks. Energies. 2016;9(1):54. doi:10.3390/en9010054
  • Zhou J, Wang S. A carbon price prediction model based on the secondary decomposition algorithm and influencing factors. Energies. 2021;14(5):1328. doi:10.3390/en14051328
  • Hao Y, Tian C. A hybrid framework for carbon trading price forecasting: the role of multiple influence factor. J Clean Prod. 2020;262:120378. doi:10.1016/j.jclepro.2020.120378
  • Huang Y, Dai X, Wang Q, et al. A hybrid model for carbon price forecasting using garch and long short-term memory network. Appl Energy. 2021;285:116485. doi:10.1016/j.apenergy.2021.116485
  • Zhang J, Li D, Hao Y, et al. A hybrid model using signal processing technology econometric models and neural network for carbon spot price forecasting. J Clean Prod. 2018;204:958–964. doi:10.1016/j.jclepro.2018.09.071
  • Sohrabi P, Jodeiri Shokri B, Dehghani H. Predicting coal price using time series methods and combination of radial basis function (rbf) neural network with time series. Min Econ. 2021;36:1–10. doi:10.1007/s13563-021-00286-z.
  • Jaipuria S. Prediction of lam coke price using ann and anfis model. Int J Appl Res Manag Econ. 2019;2(3):7–17. doi:10.33422/ijarme.v2i3.267
  • Matyjaszek M, Fernández PR, Krzemień A, et al. Forecasting coking coal prices by means of arima models and neural networks considering the transgenic time series theory. Resour Policy. 2019;61:283–292. doi:10.1016/j.resourpol.2019.02.017
  • Zhang K, Cao H, Thé J, et al. A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms. Appl Energy. 2022;306:118011. doi:10.1016/j.apenergy.2021.118011
  • Alameer Z, Fathalla A, Li K, et al. Multistep-ahead forecasting of coal prices using a hybrid deep learning model. Resour Policy. 2020;65:101588. doi:10.1016/j.resourpol.2020.101588
  • Zhang Y, Hamori S. Forecasting crude oil market crashes using machine learning technologies. Energies. 2020;13(10):2440. doi:10.3390/en13102440
  • Paul C, Nwosu I, Ezenwanyi G, et al. The optimal machine learning modeling of brent crude oil price. Quart J Econ Res. 2021;7:31–43. doi:10.18488/journal.88.2021.71.31.43
  • Abdollahi H, Ebrahimi SB. A new hybrid model for forecasting brent crude oil price. Energy. 2020;200:117520. doi:10.1016/j.energy.2020.117520
  • Jabeur SB, Khalfaoui R, Arfi WB. The effect of green energy,global environmental indexes, and stock markets in predicting oil price crashes: evidence from explainable machine learning. J Environ Manag. 2021;298:113511. doi:10.1016/j.jenvman.2021.113511
  • Lu Q, Sun S, Duan H, et al. Analysis and forecasting of crude oil price based on the variable selection-lstm integrated model. Energy Inform. 2021;4(S2):1–20. doi:10.1186/s42162-021-00166-4
  • Mustaffa Z, Yusof Y, Kamaruddin SS. An enhanced artificial bee colony optimizer for predictive analysis of heating oil prices using least squares support vector machines, in: Biologically-inspired techniques for knowledge discovery and data mining, IGI Global; 2014. p. 149–173. doi:10.4018/978-1-4666-6078-6.ch007
  • Tian L, Chen H, Zhen Z. Research on the forward-looking behavior judgment of heating oil price evolution based on complex networks. PLoS ONE. 2018;13(9):e0202209. doi:10.1371/journal.pone.0202209
  • Wang B, Wang J. Energy futures prices forecasting by novel dpfwr neural network and ds-cid evaluation. Neurocomputing. 2019;338:1–15. doi:10.1016/j.neucom.2019.01.092
  • Chiroma H, Abdul-Kareem S, Muaz SA, et al. Neural network intelligent learning algorithm for inter-related energy products applications, In: International Conference in Swarm Intelligence. Springer; 2014. p. 284–293. doi:10.1007/978-3-319-11857-4_32
  • Malliaris ME, Malliaris SG. Forecasting energy product prices, In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., Vol. 5, IEEE; 2005. p. 3284–3289. doi:10.1109/IJCNN.2005.1556454
  • Mouchtaris D, Sofianos E, Gogas P, et al. Forecasting natural gas spot prices with machine learning. Energies. 2021;14(18):5782. doi:10.3390/en14185782
  • Wang J, Cao J, Yuan S, et al. Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the ceemdan-se-and the pso-als-optimized gru network. Energy. 2021;233:121082. doi:10.1016/j.energy.2021.121082
  • Li J, Wu Q, Tian Y, et al. Monthly henry hub natural gas spot prices forecasting using variational mode decomposition and deep belief network. Energy. 2021;227:120478. doi:10.1016/j.energy.2021.120478
  • Sahed A, Mekidiche M, Kahoui H. Forecasting natural gas prices using nonlinear autoregressive neural network. Int J Math Sci Comput. 2020;5:37–46. doi:10.5815/ijmsc.2020.05.04
  • Wang C, Xu J, Xu K, et al. Rolling forecast nature gas spot price with back propagation neural network, In: 2019 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE; 2019. p. 2473–2477. doi:10.1109/iSPEC48194.2019.8974910
  • Gligorić Z, Gligorić M, Halilović D, et al. Hybrid stochastic-grey model to forecast the behavior of metal price in the mining industry. Sustainability. 2020;12(16):6533. doi:10.3390/su12166533
  • Alameer Z, Abd Elaziz M, Ewees AA, et al. Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms. Natural Resour Res. 2019;28(4):1385–1401. doi:10.1007/s11053-019-09473-w
  • Huynh TLD. The effect of uncertainty on the precious metals market: new insights from transfer entropy and neural network var. Resour Policy. 2020;66:101623. doi:10.1016/j.resourpol.2020.101623
  • Pierdzioch C, Risse M. Forecasting precious metal returns with multivariate random forests. Empir Econ. 2020;58(3):1167–1184. doi:10.1007/s00181-018-1558-9
  • Faghih Mohammadi Jalali M, Heidari H. Forecasting palladium price using gm (1, 1). Global Anal Discrete Math. 2018;3:1–9. doi:10.22128/GADM.2018.114
  • Çelik U, BaÇarır Ç.. The prediction of precious metal prices via artificial neural network by using rapidminer. Alpha J. 2017;5(1):45–45. doi:10.17093/alphanumeric.290381
  • Pierdzioch C, Risse M, Rohloff S. Are precious metals a hedge against exchange-rate movements? an empirical exploration using bayesian additive regression trees. North Am J Econom Finance. 2016;38:27–38. doi:10.1016/j.najef.2016.06.002
  • Erkan TE, Karaçor AG. On predictability of precious metals towards robust trading. Int Sci J ‘Industry 4.0’. 2020;5:87–89.
  • Sadorsky P. Predicting gold and silver price direction using tree-based classifiers. J Risk Finan Manage. 2021;14(5):198. doi:10.3390/jrfm14050198
  • Aruna S, Umamaheswari P, Sujipriya J. Prediction of potential gold prices using machine learning approach. Ann Roman Soc Cell Biol. 2021;25:1385–1396.
  • Jabeur SB, Mefteh-Wali S, Viviani J-L. Forecasting gold price with the xgboost algorithm and shap interaction values. Ann Oper Res. 2021;1–21. doi:10.1007/s10479-021-04187-w
  • Yuan F-C, Lee C-H, Chiu C. Using market sentiment analysis and genetic algorithm-based least squares support vector regression to predict gold prices. Int J Comput Intell Syst. 2020;13(1):234–246. doi:10.2991/ijcis.d.200214.002
  • Tang B-q., Han J, Guo G-f., et al. Building material prices forecasting based on least square support vector machine and improved particle swarm optimization. Archit Eng Desig Manag. 2019;15:196–212. doi:10.1080/17452007.2018.1556577
  • Xu X, Zhang Y. Regional steel price index forecasts with neural networks: evidence from east,south, north, central south, northeast, southwest, and northwest China. J Supercomput. 2023. doi:10.1007/s11227-023-05207-1
  • Shyu Y-W, Chang C-C. A hybrid model of memd and pso-lssvr for steel price forecasting. Int J Eng Manag Res. 2022;12:130–40. doi:10.31033/ijemr.12.1.5
  • Mir M, Kabir HD, Nasirzadeh F, et al. Neural network-based interval forecasting of construction material prices. J Build Eng. 2021;39:102288. doi:10.1016/j.jobe.2021.102288
  • Ganokratanaa T, Ketcham M. Deep index price forecasting in steel industry. In: 2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE; 2021. p. 1–6. doi:10.1109/JCSSE53117.2021.9493843
  • Liu Z, Wang Y, Zhu S, et al. Steel prices index prediction in China based on bp neural network. In: LISS 2014, Springer; 2015. p. 603–608. doi:10.1007/978-3-662-43871-8_87
  • Benrhmach G, Namir K, Namir A, et al. Nonlinear autoregressive neural network and extended kalman filters for prediction of financial time series. J Appl Math. 2020;2020:1–6.doi:10.1155/2020/5057801
  • Wu B, Zhu Q. Week-ahead price forecasting for steel market based on rbf nn and asw. In: 2012 IEEE International Conference on Computer Science and Automation Engineering. IEEE; 2012. p. 729–732. doi:10.1109/ICSESS.2012.6269570
  • Eroglu Y, Sakar IK. Price modeling for steel industry: a case for Turkey.
  • Yuan CZ, San WW, Leong TW. Determining optimal lag time selection function with novel machine learning strategies for better agricultural commodity prices forecasting in malaysia, in: Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications. 2020. p. 37–42. doi:10.1145/3417473.3417480
  • Zhang D, Chen S, Liwen L, et al. Forecasting agricultural commodity prices using model selection framework with time series features and forecast horizons. IEEE Access. 2020;8:28197–28209. doi:10.1109/ACCESS.2020.2971591
  • Jha GK, Sinha K. Time-delay neural networks for time series prediction: an application to the monthly wholesale price of oilseeds in india. Neural Comput Appl. 2014;24(3-4):563–571. doi:10.1007/s00521-012-1264-z
  • RL M, Mishra AK. Forecasting spot prices of agricultural commodities in india: application of deep-learning models. Intell Syst Account Finance Manag. 2021;28(1):72–83. doi:10.1002/isaf.1487
  • Bayona-Oré S, Cerna R, Tirado Hinojoza E. Machine learning for price prediction for agricultural products. 2021. doi:10.37394/23207.2021.18.92
  • Majid R. Advances in statistical forecasting methods: an overview. Econ Affairs. 2018;63(4):295479. doi:10.30954/0424-2513.4.2018.5
  • Wang L, Feng J, Sui X, et al. Agricultural product price forecasting methods: research advances and trend. British Food J. 2020;122:2121–2138. doi:10.1108/BFJ-09-2019-0683.
  • Xu X, Zhang Y. Office property price index forecasting using neural networks. J Finan Manage Property Construct. 2023.
  • Karasu S, Altan A, Saraç Z, et al. Prediction of wind speed with non-linear autoregressive (nar) neural networks, In: 2017 25th Signal Processing and Communications Applications Conference (SIU). IEEE; 2017. p. 1–4. doi:10.1109/SIU.2017.7960507
  • Xu X, Zhang Y. Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat. Intell Syst Acc Financ Manag. 2022;29(3):169–181. doi:10.1002/isaf.1519
  • Karasu S, Altan A, Saraç Z, et al. Estimation of fast varied wind speed based on narx neural network by using curve fitting. Int J Energy Appl Technol. 2017;4:137–146. https://dergipark.org.tr/en/download/article-file/354536.
  • Xu X. Causal structure among us corn futures and regional cash prices in the time and frequency domain. J Appl Stat. 2018;45(13):2455–2480. doi:10.1080/02664763.2017.1423044
  • Yang J, Su X, Kolari JW. Do euro exchange rates follow a martingale? some out-of-sample evidence. J Bank Financ. 2008;32(5):729–740. doi:10.1016/j.jbankfin.2007.05.009
  • Xu X. Cointegration among regional corn cash prices. Econ Bull. 2015;35:2581–2594. http://www.accessecon.com/Pubs/EB/2015/Volume35/EB-15-V35-I4-P259.pdf
  • Yang J, Cabrera J, Wang T. Nonlinearity data-snooping, and stock index etf return predictability. Eur J Oper Res. 2010;200(2):498–507. doi:10.1016/j.ejor.2009.01.009
  • Xu X. Cointegration and price discovery in us corn cash and futures markets. Empir Econ. 2018;55(4):1889–1923. doi:10.1007/s00181-017-1322-6
  • Wang T, Yang J. Nonlinearity and intraday efficiency tests on energy futures markets. Energy Econom. 2010;32:2496–503. doi:10.1016/j.eneco.2009.08.001
  • Xu X, Zhang Y. Individual time series and composite forecasting of the Chinese stock index. Mach Learning Appl. 2021;5:100035. doi:10.1016/j.mlwa.2021.100035
  • Karasu S, Altan A, Bekiros S, et al. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy. 2020;212:118750. doi:10.1016/j.energy.2020.118750
  • Xu X. Linear and nonlinear causality between corn cash and futures prices. J Agric Food Ind Organ. 2018;16(2):20160006. doi:10.1515/jafio-2016-0006
  • Wegener C, von Spreckelsen C, Basse T, et al. Forecasting government bond yields with neural networks considering cointegration. J Forecast. 2016;35(1):86–92. doi:10.1002/for.2385
  • Xu X, Zhang Y. Network analysis of housing price comovements of a hundred Chinese cities. Natl Inst Econ Rev. 2022. doi:10.1017/nie.2021.34
  • Xu X, Zhang Y. Neural network predictions of the high-frequency csi300 first distant futures trading volume. Finan Markets Portfolio Manage. 2022. doi:10.1007/s11408-022-00421-y
  • Altan A, Karasu S, Zio E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl Soft Comput. 2021;100:106996. doi:10.1016/j.asoc.2020.106996
  • Xu X. Intraday price information flows between the csi300 and futures market: an application of wavelet analysis. Empir Econ. 2018;54(3):1267–1295. doi:10.1007/s00181-017-1245-2
  • Abraham ER, Mendes dos Reis JG, Vendrametto O, et al. Time series prediction with artificial neural networks: an analysis using brazilian soybean production. Agriculture. 2020;10(10):475. doi:10.3390/agriculture10100475
  • Xu X, Zhang Y. Network analysis of corn cash price comovements. Mach Learning Appl. 2021;6:100140. doi:10.1016/j.mlwa.2021.100140
  • Liu Z, Zhu S, Wang Y, et al. Thread steel price index prediction in China based on arima model. In: LISS 2014. Springer; 2015. p. 609–614. doi:10.1007/978-3-662-43871-8_88
  • Zola P, Carpita M. Forecasting the steel product prices with the arima model. Stat Appl. 2016;14:1. doi:10.1400/250432
  • Kapl M, Müller WG. Prediction of steel prices: a comparison between a conventional regression model and mssa. Stat Interface. 2010;3(3):369–375. doi:10.4310/SII.2010.v3.n3.a10
  • Adli KA. Forecasting steel prices using arimax model: a case study of turkey. Int J Bus Manag Technol. 2020;4(5):62–68.
  • Supattana N. Steel price index forecasting using arima and arimax model. Natl Inst Develop Admin. 2014;1.
  • Tcha M, Kim PJ. Steel price projections, in: The Economics of the East Asia Steel Industries, Routledge, 2019, p. 225–256.
  • Ming-Tao C, Bo-Ching H. An analysis of the relationship between forward freight agreements and steel price index: an application of the vector arma model. Afr J Bus Manag. 2010;4:1149–1154.
  • Xiarchos IM. Steel: Price links between primary and scrap market. Technical Report. 2005. doi:10.22004/ag.econ.35655
  • Chou M-T. Dynamic economic relations among steel price indices. J Mar Sci Technol. 2016;24:3. doi:10.6119/JMST-016-0504-1
  • Faghih SAM, Kashani H. Forecasting construction material prices using vector error correction model. J Constr Eng Manag. 2018;144(8):04018075. doi:10.1061/(ASCE)CO.1943-7862.0001528
  • Jiang H, Xu Y, Liu C. Market effects on forecasting construction prices using vector error correction models. Int J Construct Manage. 2014;14:2101–112. doi:10.1080/15623599.2014.899128
  • Kim S, Abediniangerabi B, Shahandashti M. ASCE, pipeline construction cost forecasting using multivariate time series methods. J Pipe Syst Eng Pract. 2021;12(3):04021026. doi:10.1061/(ASCE)PS.1949-1204.0000553
  • Bin D. The empirical study on dynamic relationship between domestic and global steel price. In: 2007 International Conference on Wireless Communications, Networking and Mobile Computing. IEEE; 2007. p. 4347–4350. doi:10.1109/WICOM.2007.1072
  • Liu Y, Yang C, Huang K, et al. Non-ferrous metals price forecasting based on variational mode decomposition and lstm network. Knowl Based Syst. 2020;188:105006. doi:10.1016/j.knosys.2019.105006
  • Tuo J, Zhang F. Modelling the iron ore price index: a new perspective from a hybrid data reconstructed eemd-goru model. J Manag Sci Eng. 2020;5:212–225. doi:10.1016/j.jmse.2020.08.003
  • Wang Z-X, Zhao Y-F, He L-Y. Forecasting the monthly iron ore import of China using a model combining empirical mode decomposition non-linear autoregressive neural network, and autoregressive integrated moving average. Appl Soft Comput. 2020;94:106475. doi:10.1016/j.asoc.2020.106475
  • Wang J, Li X. A combined neural network model for commodity price forecasting with ssa. Soft Comput. 2018;22:165323–5333. doi:10.1007/s00500-018-3023-2
  • Ou T-Y, Cheng C-Y, Chen P-J, et al. Dynamic cost forecasting model based on extreme learning machine-a case study in steel plant. Comput Ind Eng. 2016;101:544–553. doi:10.1016/j.cie.2016.09.012
  • Raju S, Sarker A, Das A, et al. An approach for demand forecasting in steel industries using ensemble learning. Complexity. 2022;2022:1–19. doi:10.1155/2022/9928836
  • Xu X. The rolling causal structure between the Chinese stock index and futures. Financ Mark Portf Manag. 2017;31(4):491–509. doi:10.1007/s11408-017-0299-7
  • Xu X. Contemporaneous causal orderings of csi300 and futures prices through directed acyclic graphs. Econ Bull. 2019;39:2052–2077. http://www.accessecon.com/Pubs/EB/2019/Volume39/EB-19-V39-I3-P192.pdf.
  • Xu X, Zhang Y. Contemporaneous causality among one hundred Chinese cities. Empir Econ. 2022;63(4):2315–2329. doi:10.1007/s00181-021-02190-5
  • Xu X, Zhang Y. Network analysis of comovements among newly-built residential house price indices of seventy Chinese cities. Int J Hous Mark Anal. 2022. doi:10.1108/IJHMA-09-2022-0134
  • Dickey DA, Fuller WA. Likelihood ratio statistics for autoregressive time series with a unit root. Econ: J Econ Soc. 1981;1:1057–1072. doi:10.2307/1912517
  • Phillips PC, Perron P. Testing for a unit root in time series regression. Biometrika. 1988;75(2):335–346. doi:10.1093/biomet/75.2.335
  • Kwiatkowski D, Phillips PC, Schmidt P, et al. Testing the null hypothesis of stationarity against the alternative of a unit root. J Econom. 1992;54(1-3):159–178. doi:10.1016/0304-4076(92)90104-Y
  • Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart Appl Math. 1944;2(2):164–168.
  • Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Indus Appl Math. 1963;11:2431–441. doi:10.1137/0111030
  • Møller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993;6(4):525–533. doi:10.1016/S0893-6080(05)80056-5
  • Xu X, Zhang Y. Soybean and soybean oil price forecasting through the nonlinear autoregressive neural network (narnn) and narnn with exogenous inputs (narnn–x). Intell Syst Appl. 2022;13:200061. doi:10.1016/j.iswa.2022.200061
  • Doan CD, Liong S-Y. Generalization for multilayer neural network bayesian regularization or early stopping. In: Proceedings of Asia Pacific Association of Hydrology and Water Resources 2nd Conference. 2004. p. 5–8.
  • Kayri M. Predictive abilities of bayesian regularization and levenberg–marquardt algorithms in artificial neural networks: a comparative empirical study on social data. Math Comput Appl. 2016;21:20. doi:10.3390/mca21020020
  • Xu X, Zhang Y. House price forecasting with neural networks. Intell Syst Appl. 2021;12:200052. doi:10.1016/j.iswa.2021.200052
  • Khan TA, Alam M, Shahid Z, et al. Comparative performance analysis of levenberg-marquardt, bayesian regularization and scaled conjugate gradient for the prediction of flash floods. J Inform Commun Tech Robot Appl. 2019;10:52–58. http://jictra.com.pk/index.php/jictra/article/view/188/112
  • Xu X, Zhang Y. Second-hand house price index forecasting with neural networks. J Prop Res. 2022;39(3):215–236. doi:10.1080/09599916.2021.1996446
  • Selvamuthu D, Kumar V, Mishra A. Indian stock market prediction using artificial neural networks on tick data. Finan Innov. 2019;5(1):16. doi:10.1186/s40854-019-0131-7
  • Xu X, Zhang Y. Rent index forecasting through neural networks. J Econ Stud. 2022;49(8):1321–1339. doi:10.1108/JES-06-2021-0316
  • Xu X, Zhang Y. Retail property price index forecasting through neural networks. J Real Estate Portf Manag. 2022;1–28. doi:10.1080/10835547.2022.2110668
  • Baghirli O. Comparison of lavenberg-marquardt, scaled conjugate gradient and bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network. 2015.
  • Xu X, Zhang Y. Residential housing price index forecasting via neural networks. Neural Comput Appl. 2022;34(17):14763–14776. doi:10.1007/s00521-022-07309-y
  • Al Bataineh A, Kaur D. A comparative study of different curve fitting algorithms in artificial neural network using housing dataset. In: NAECON 2018-IEEE National Aerospace and Electronics Conference. IEEE; 2018. p. 174–178. doi:10.1109/NAECON.2018.8556738
  • Xu X, Zhang Y. Coking coal futures price index forecasting with the neural network. Min Econ. 2023;36(2):349–359. doi:10.1007/s13563-022-00311-9
  • Paluszek M, Thomas S. Practical MATLAB deep learning: a project-based approach. New York, NC: Apress; 2020. https://link.springer.com/content/pdf/10.1007/978-1-4842-5124-9.pdf.
  • Xu X, Zhang Y. A high-frequency trading volume prediction model using neural networks. Decis Anal J. 2023;7:100235. doi:10.1016/j.dajour.2023.100235
  • Hagan MT, Menhaj MB. Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw. 1994;5(6):989–993. doi:10.1109/72.329697
  • Hagan MT, Demuth HB, Beale M. Neural network design. Boston, MA: PWS Publishing Co; 1997.
  • Xu X, Zhang Y. Forecasting the total market value of a shares traded in the shenzhen stock exchange via the neural network. Econom Bull. 2022.
  • Batra D. Comparison between Levenberg-Marquardt and scaled conjugate gradient training algorithms for image compression using mlp. Int J Imag Proces. 2014;8:412–422.
  • Xu X, Zhang Y. Thermal coal price forecasting via the neural network. Intel Syst Appl. 2022;14:200084. doi:10.1016/j.iswa.2022.200084
  • Brock WA, Scheinkman JA, Dechert WD, et al. A test for independence based on the correlation dimension. Econom Rev. 1996;15(3):197–235. doi:10.1080/07474939608800353
  • Dergiades T, Martinopoulos G, Tsoulfidis L. Energy consumption and economic growth: parametric and non-parametric causality testing for the case of greece. Energy Econ. 2013;36:686–697. doi:10.1016/j.eneco.2012.11.017
  • Fujihara RA, Mougoué M. An examination of linear and nonlinear causal relationships between price variability and volume in petroleum futures markets. J Futures Markets: Futures Options Other Deriv Products. 1997;17:385–416. doi:10.1002/(SICI)1096-9934(199706)17:4<385::AID-FUT2¿3.0.CO;2-D
  • Diebold FX, Mariano RS. Comparing predictive accuracy. J Bus Econ Stat. 2002;20(1):134–144. doi:10.2307/1392185
  • Harvey D, Leybourne S, Newbold P. Testing the equality of prediction mean squared errors. Int J Forecast. 1997;13(2):281–291. doi:10.1016/S0169-2070(96)00719-4
  • Kano Y, Shimizu S. Causal inference using nonnormality, In Proceedings of the international symposium on science of modeling, the 30th anniversary of the information criterion. 2003. p. 261–270.
  • Shimizu S, Hoyer PO, Hyvärinen A, et al. A linear non-Gaussian acyclic model for causal discovery. J Mach Learn Res. 2006;7:2003–2030. https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf?ref=https://codemonkey.link
  • Xu X, Zhang Y. Contemporaneous causality among residential housing prices of ten major Chinese cities. Int J Housing Markets Anal. 2022. doi:10.1108/IJHMA-03-2022-0039
  • Shimizu S, Kano Y. Use of non-normality in structural equation modeling: application to direction of causation. J Stat Plan Inference. 2008;138(11):3483–3491. doi:10.1016/j.jspi.2006.01.017
  • Shimizu S, Inazumi T, Sogawa Y, et al. Directlingam A direct method for learning a linear non-Gaussian structural equation model. J Mach Learn Res. 2011;12:1225–1248. https://www.jmlr.org/papers/volume12/shimizu11a/shimizu11a.pdf
  • Xu X. Causality and price discovery in US corn markets: an application of error correction modeling and directed acyclic graphs. 2014. doi:10.22004/ag.econ.169806
  • Bessler DA, Wang Z. D-separation, forecasting, and economic science: a conjecture. Theory Decis. 2012;73(2):295–314. doi:10.1007/s11238-012-9305-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.