Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 11
160
Views
0
CrossRef citations to date
0
Altmetric
Articles

One-step quenching and partitioning treatment of directly hot rolled low carbon steel

ORCID Icon, , &
Pages 1717-1725 | Received 02 Mar 2023, Accepted 07 Jun 2023, Published online: 01 Jul 2023

References

  • Bouaziz O, Zurob H, Huang M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res Int. 2013;84(10):937–947. doi: 10.1002/srin.201200288.
  • Wang Y, Sun J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility. Acta Mater. 2018;158:247–256. doi: 10.1016/j.actamat.2018.07.060
  • He K, Wang L, Li X. Review of the energy consumption and production structure of China's steel industry: current situation and future development. Metals. 2020;10(3):302. doi: 10.3390/met10030302
  • Li Y, Yuan G, Li L, et al. Ductile 2-GPa steels with hierarchical substructure. Science. 2023;379:168–173. doi: 10.1126/science.add7857
  • Yi HL, Sun L, Xiong XC. Challenges in the formability of the next generation of automotive steel sheets. Mater Sci Technol. 2018;34(9):1112–1117. doi: 10.1080/02670836.2018.1424383
  • Speer JG, de Moor E, Clarke AJ. Critical assessment: quenching and partitioning. Mater Sci Technol. 2014;3(1):3–9. doi: 10.1179/1743284714Y.0000000628
  • Speer J, Matlock DK, De Cooman BC, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51(9):2611–2622. doi: 10.1016/S1359-6454(03)00059-4
  • Edmonds DV, He K, Rizzo FC, et al. Quenching and partitioning martensite—a novel steel heat treatment. Mater Sci Eng A. 2006;438–440:25–34. doi: 10.1016/j.msea.2006.02.133
  • Speer JG, De Moor E, Clarke AJ. Critical assessment 7: quenching and partitioning. Mater Sci Technol. 2015;31(1):3–9. doi: 10.1179/1743284714Y.0000000628
  • Tan X, Xu Y, Yang X, et al. Microstructure–properties relationship in a one-step quenched and partitioned steel. Mater Sci Eng A. 2014;589:101–111. doi: 10.1016/j.msea.2013.09.063
  • Kong H, Chao Q, Cai MH, et al. One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater Sci Eng A. 2017;707:538–547. doi: 10.1016/j.msea.2017.09.038
  • Tariq F, Baloch RA. One-step quenching and partitioning heat treatment of medium carbon low alloy steel. J Mater Eng Perform. 2014;23(5):1726–1739. doi: 10.1007/s11665-014-0902-2
  • Parthiban R, Ghosh Chowdhury S, Harikumar KC, et al. Evolution of microstructure and its influence on tensile properties in thermo-mechanically controlled processed (TMCP) quench and partition (Q&P) steel. Mater Sci Eng A. 2017;705:376–384. doi: 10.1016/j.msea.2017.08.095
  • Yamashita T, Morooka S, Harjo S, et al. Role of retained austenite in low alloy steel at low temperature monitored by neutron diffraction. Scr Mater. 2020;177:6–10. doi: 10.1016/j.scriptamat.2019.10.002
  • Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:140023. doi: 10.1016/j.msea.2020.140023
  • Wu R, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels. Metal Mater Trans A. 2014;45(4):1892–1902. doi: 10.1007/s11661-013-2113-0
  • Salehiyan D, Samei J, Amirkhiz BS, et al. Microstructural evolution during deformation of a QP980 steel. Metal Mater Trans A. 2020;51(9):4524–4539. doi: 10.1007/s11661-020-05882-2
  • Santofimia MJ, Zhao L, Petrov R, et al. Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel. Mater Charact. 2008;59(12):1758–1764. doi: 10.1016/j.matchar.2008.04.004
  • Liang J, Zhao Z, Sun B, et al. A novel ultra-strong hot stamping steel treated by quenching and partitioning process. Mater Sci Technol. 2018;34(18):2241–2249. doi: 10.1080/02670836.2018.1525860
  • Dai Z, Ding R, Yang Z, et al. Thermo-kinetic design of retained austenite in advanced high strength steels. Acta Mater. 2018;152:288–299. doi: 10.1016/j.actamat.2018.04.040
  • Bansal GK, Pradeep M, Ghosh C, et al. Evolution of microstructure in a low-Si micro-alloyed steel processed through one-step quenching and partitioning. Metal Mater Trans A. 2019;50(2):547–555. doi: 10.1007/s11661-018-5039-8
  • Clarke AJ, Speer JG, Matlock DK, et al. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning. Scr Mater. 2009;61(2):149–152. doi: 10.1016/j.scriptamat.2009.03.021
  • Peng F, Gu X, Xu Y. Tailoring austenite stability and mechanical behaviors of IQ&P steel via prior bainite formation. Mater Sci Eng A. 2021;822:141663. doi: 10.1016/j.msea.2021.141663
  • Hou ZR, Zhao XM, Zhang W, et al. A medium manganese steel designed for water quenching and partitioning. Mater Sci Technol. 2018;34(10):1168–1175. doi: 10.1080/02670836.2018.1426678
  • Song C, Yu H, Lu J, et al. Modeling of bainite transformation during partitioning process and atomic-scale characterization of bainite. Steel Res Int. 2019;90(5):1800482. doi: 10.1002/srin.v90.5
  • Song C, Yu H, Li L, et al. The stability of retained austenite at different locations during straining of I&Q&P steel. Mater Sci Eng A. 2016;670:326–334. doi: 10.1016/j.msea.2016.06.044
  • Li Y-j., Li X-l., Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes. Mater Charact. 2016;121:157–165. doi: 10.1016/j.matchar.2016.10.005
  • Tan X, Xu Y, Yang X, et al. Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel. Mater Sci Eng A. 2014;594:149–160. doi: 10.1016/j.msea.2013.11.064
  • Tan X, Ponge D, Lu W, et al. Carbon and strain partitioning in a quenched and partitioned steel containing ferrite. Acta Mater. 2019;165:561–576. doi: 10.1016/j.actamat.2018.12.019
  • Zhao J, Zhao X, Dong C, et al. Effect of bainitic transformation combined with hot forming on the microstructure and mechanical properties of bainite-martensite multiphase steel. Mater Sci Eng A. 2018;731:102–106. doi: 10.1016/j.msea.2018.05.111
  • Gui X, Gao G, Guo H, et al. Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn–Si–Cr–C steel. Mater Sci Eng A. 2017;684:598–605. doi: 10.1016/j.msea.2016.12.097
  • Kang Y, Yu H, Fu J, et al. Morphology and precipitation kinetics of ALN in hot strip of low carbon steel produced by compact strip production. Mater Sci Eng A. 2003;351(1–2):265–271. doi: 10.1016/S0921-5093(02)00845-6
  • Ai JH, Zhao TC, Gao HJ, et al. Effect of controlled rolling and cooling on the microstructure and mechanical properties of 60Si2MnA spring steel rod. J Mater Process Technol. 2005;160(3):390–395. doi: 10.1016/j.jmatprotec.2004.06.028
  • Sugimoto K-i., Usui N, Kobayashi M, et al. Effects of volume fraction and stability of retained austenite on ductility of trip-aided dual-phase steels. ISIJ Int. 1992;32(12):1311–1318. doi: 10.2355/isijinternational.32.1311
  • Hofer C, Leitner H, Winkelhofer F, et al. Structural characterization of carbide-free bainite in a Fe–0.2C–1.5Si–2.5Mn steel. Mater Charact. 2015;102:85–91. doi: 10.1016/j.matchar.2015.02.020
  • Chen S, Wang C, Shan L, et al. Revealing the conditions of bainitic transformation in quenching and partitioning steels. Metal Mater Trans A. 2019;50(9):4037–4046. doi: 10.1007/s11661-019-05341-7
  • Zhang K, Zhang M, Guo Z, et al. A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater Sci Eng A. 2011;528(29–30):8486–8491. doi: 10.1016/j.msea.2011.07.049
  • Zhou S, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel. J Mater Res Technol. 2021;14:1021–1034. doi: 10.1016/j.jmrt.2021.07.011
  • Gao G, Zhang H, Gui X, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite. Acta Mater. 2014;76:425–433. doi: 10.1016/j.actamat.2014.05.055
  • Lawrynowicz Z. Carbon partitioning during bainite transformation in low alloy steels. Mater Sci Technol. 2002;18(11):1322–1324. doi: 10.1179/026708302225007259
  • H. Bhadeshia HKD. Bainite in steels: theory and practice. Le恶ds: Maney Publishing; 2015.
  • Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater. 2011;59(14):5845–5858. doi: 10.1016/j.actamat.2011.05.061
  • Xu Y, Chen F, Li Z, et al. Kinetics of carbon partitioning of Q&P steel: considering the morphology of retained austenite. Metals. 2022;12(2):344. doi: 10.3390/met12020344
  • Xu Y, Tan X, Yang X, et al. Microstructure evolution and mechanical properties of a hot-rolled directly quenched and partitioned steel containing proeutectoid ferrite. Mater Sci Eng A. 2014;607:460–475. doi: 10.1016/j.msea.2014.04.030
  • Elhigazi F, Artemev A. Interaction between carbon partitioning and carbide nucleation inside austenite during a bainitic type transformation. Comput Mater Sci. 2020;184:109846. doi: 10.1016/j.commatsci.2020.109846
  • Ramesh Babu S, Jaskari M, Jarvenpää A, et al. Precipitation versus partitioning kinetics during the quenching of low-carbon martensitic steels. Metals. 2020;10(7):850. doi: 10.3390/met10070850
  • Kozeschnik E, Bhadeshia H. Influence of silicon on cementite precipitation in steels. Mater Sci Technol. 2008;24(3):343–347. doi: 10.1179/174328408X275973

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.