Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 10: STEEL WORLD ISSUE
251
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Scrap dissolution effect in BOF converter process

ORCID Icon
Pages 1434-1442 | Received 16 Jun 2023, Accepted 10 Aug 2023, Published online: 02 Sep 2023

References

  • Szekely J, Chuang YK, Hlinka JW. The melting and dissolution of low-carbon steels in iron-carbon melts. Metall Mater Trans B. 1972;3:2825–2833. doi:10.1007/BF02652849
  • Kruskopf A, Holappa L. Scrap melting model for steel converter founded on interfacial solid/liquid phenomena. Metall. Res. Technol. 2018;115:201–208. doi:10.1051/metal/2017091
  • Lytvynyuk Y, Schenk J, Hiebler M, et al. Thermodynamic and kinetic model of the converter steelmaking process. part 1: the description of the BOF model. Steel Res. Int. 2014;85:537–543. doi:10.1002/srin.201300272
  • Penz FM, Schenk J, Ammer R, et al. Metals (Basel). 2018;8:1078. doi:10.3390/met8121078
  • Xi X, Chen S, Yang S, et al. Characteristics of multipiece steel scrap in liquid steel. ISIJ Int. 2021;61:190–199. doi:10.2355/isijinternational.ISIJINT-2020-269
  • Isobe K, Maede H, Ozawa K, et al. Analysis of the scrap melting rate in high carbon molten iron. ISIJ Int. 1990;76:2033–2040.
  • Gaye H, Wanin M, Gugliermina P, et al. Kinetics of scrap dissolution in the converter.theoretical model and plant experimentation. Proceedings of the 68th steelmaking conference, AIME; 14–17 April 1985; Detroit, MI, USA. p. 91–103.
  • Sethi G, Shukla AK, Das PC, et al. Theoretical aspects of scrap solution in oxygen steelmaking converters. Proceedings of the AISTech 2004 proceedings, volume II; 15–17 September 2014; Nashville, TN, USA. p. 915–926.
  • Volkova O, Heller HP, Janke D. Mathematical simulation of process parameters in the case of rapid solidification of steel. Steel Res. Int. 2003;74:708–715. doi:10.1002/srin.200300254
  • Shukla AK, Deo B, Robertson DGC. Scrap dissolution in molten iron containing carbon for the case of coupled heat and mass transfer control. Metall Mater Trans B. 2013;44:1407–1427. doi:10.1007/s11663-013-9905-x
  • Asai S, Muchi I. Effect of scrap melting on the process variables in LD converter caused by the change of operating conditions. Trans. ISIJ. 1971;11:107–115. doi:10.2355/isijinternational1966.11.107
  • Asai S, Muchi I. Theoretical analysis by the use of mathematical model in LD converter operation. Trans. ISIJ. 1970;10:250–263. doi:10.2355/isijinternational1966.10.250
  • Yorucu H, Rolls R. A mathematical model of scrap melting for the LD process. Iron Steel Int. 1976;49:35–40.
  • Brooks GA, Provatas N. Phase-Field modeling of steel scrap melting in a liquid steel bath. Proceedings of the AISTech 2004 proceedings; 8–11 May 2004; Nashville, TN, USA. p. 833–843.
  • Guo D, Swickard D, Alavanja D, et al. Numerical simulation of heavy scrap melting in BOF steelmaking. Iron Steel Technol. 2013;10:125–132.
  • Dogan N, Brooks GA, Rhamdhani MA. Comprehensive model of oxygen steelmaking part 1: model development andvalidation. ISIJ Int. 2011;51:1086–1092. doi:10.2355/isijinternational.51.1086
  • Dogan N, Brooks GA, Rhamdhani MA. Comprehensive model of oxygen steelmaking part 3: decarburization in impact zone. ISIJ Int. 2011;51:1102–1109. doi:10.2355/isijinternational.51.1102
  • Singha P, Shukla Ak. Contribution of hot spot zone in decarburization of BOF steelmaking: a fundamental analysis based upon FactSage-macro program. Metals (Basel). 2022;12:1–17. doi:10.3390/met12040638
  • Singha P. Refining at the impact and emulsion zones of basic oxygen steel making process – a fundamental study. Ironmak Steelmak. 2023;22:1–10.
  • Coley KS, Chen E, Pomeroy M. Kinetics of reaction important in oxygen steelmaking. Proceedings of the extraction and processing division symposiumon pyrometallurgy; 16–20 June 2014; San Diego, CA, USA. p. 289–302.
  • Chen E, Coley KS. Kinetic study of droplet swelling in BOF steelmaking. Ironmak. Steelmak. 2010;37:541–545. doi:10.1179/030192310X12700328926100
  • Gu K, Dogan N, Coley KS. The influence of sulfur on dephosphorization kinetics between bloated metal droplets and slag containing FeO. Metall. Mater. Trans B. 2017;48:2343–2353. doi:10.1007/s11663-017-1002-0
  • Gu K, Dogan N, Coley KS. An assessment of the general applicability of the relationship between nucleation of co bubbles and mass transfer of phosphorus in liquid iron alloys. Metall Mater Trans B. 2018;49:1119–1135. doi:10.1007/s11663-018-1212-0
  • Rout BK, Brooks GA, Li Z, et al. Dynamic modeling of oxygen steelmaking process: multi-zone kinetic approach. AISTech. 2017;2017:1315–1326.
  • Hamano T, Horibe M, Ito K. Reaction mechanism between solid CaO and FeOx – CaO – SiO2 – P2O5 slag at 1573 K. ISIJ Int. 2006;46:490–495. doi:10.2355/isijinternational.46.490
  • Maruoka N, Ito A, Hayasaka M, et al. Effect of CO2 content in quicklime on dissolution rate of quicklime in steelmaking slags. ISIJ Int. 2017;57:1684–1690. doi:10.2355/isijinternational.ISIJINT-2017-261
  • Maruoka N, Ishikawa A, Shibata H, et al. Dissolution rate of various limes into steelmaking slag. High Temp. Mater. Process. 2013;32:15–24. doi:10.1515/htmp-2012-0049
  • Matsushima M, Yadoomaru S, Mori K, et al. A fundamental study on the dissolution rate of solid lime into liquid slag. Trans. Iron Steel Inst. Jpn. 1977;17:442–449. doi:10.2355/isijinternational1966.17.442
  • Dogan N, Brooks GA, Rhamdhani MA. Kinetics of flux dissolution in oxygen steelmaking. ISIJ Int. 2009;49:1474–1482. doi:10.2355/isijinternational.49.1474
  • Sarkar R, Roy U, Ghosh D. A model for dissolution of lime in steelmaking slags. Metall Mater Trans B. 2016;47:2651–2665. doi:10.1007/s11663-016-0659-0
  • Martinsson J, Glaser B, Sichen D. Lime dissolution in foaming BOF slag. Metall Mater Trans B. 2018;49:3164–3170. doi:10.1007/s11663-018-1421-6
  • FactSage. Center for Research in Chemical Thermodynamics, Polytechnique de Montreal, Canada. www.factsage.com, (Accessed 3 April 2023).
  • Isobe K, Maede H, Ozawa K, et al. Analysis of the scrap melting rate in high carbon molten iron. Tetsu-to-Hagane. 1990;76:2033–2040. doi:10.2355/tetsutohagane1955.76.11_2033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.