523
Views
1
CrossRef citations to date
0
Altmetric
Articles

Rotating convective turbulence in moderate to high Prandtl number fluids

&
Pages 397-436 | Received 15 May 2023, Accepted 04 Nov 2023, Published online: 06 Dec 2023

References

  • Ahlers, G., Grossmann, S. and Lohse, D., Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 2009, 81, 503–537.
  • Arkles, B., Conventional silicone fluids. In Silicone Fluids: Stable, Inert Media, pp. 8–13, 2013 (Gelest, Inc.: Morrisville, PA).
  • Aubert, J., Brito, D., Nataf, H., Cardin, P. and Masson, J., A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 2001, 128, 51–74.
  • Aurnou, J. and King, E., The cross-over to magnetostrophic convection in planetary dynamo systems. Proc. R. Soc. Lond. A 2017, 473, 20160731.
  • Aurnou, J.M., Bertin, V., Grannan, A.M., Horn, S. and Vogt, T., Rotating thermal convection in liquid gallium: Multi-modal flow, absent steady columns. J. Fluid Mech. 2018, 846, 846–876.
  • Aurnou, J.M., Horn, S. and Julien, K., Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Phys. Rev. Res. 2020, 2, 043115.
  • Bire, S., Kang, W., Ramadhan, A., Campin, J.M. and Marshall, J., Exploring ocean circulation on icy moons heated from below. J. Geophys. Res. 2022, 127, e2021JE007025.
  • Bouffard, M., Choblet, G., Labrosse, S. and Wicht, J., Chemical convection and stratification in the Earth's outer core. Front. Earth Sci. 2019, 7, 99.
  • Bouillaut, V., Miquel, B., Julien, K., Aumaître, S. and Gallet, B., Experimental observation of the geostrophic turbulence regime of rapidly rotating convection. Proc. Natl. Acad. Sci. USA 2021, 118, e2105015118.
  • Bromiley, P., Products and convolutions of Gaussian probability density functions. Tina Vis. Memo 2003, 3, 1.
  • Calkins, M.A., Noir, J., Eldredge, J.D. and Aurnou, J.M., The effects of boundary topography on convection in Earth's core. Geophys. J. Int. 2012, 189, 799–814.
  • Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, 1961. (Courier Corporation: Oxford, UK).
  • Cheng, J.S. and Aurnou, J.M., Tests of diffusion-free scaling behaviors in numerical dynamo datasets. Earth Planet. Sci. Lett. 2016, 436, 121–129.
  • Cheng, J.S., Stellmach, S., Ribeiro, A., Grannan, A., King, E.M. and Aurnou, J.M., Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Int. 2015, 201, 1–17.
  • Cheng, J.S., Madonia, M., Guzmán, A.J.A. and Kunnen, R.P., Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection. Phys. Rev. Fluids 2020, 5, 113501.
  • Claßen, S., Heimpel, M. and Christensen, U., Blob instability in rotating compositional convection. Geophys. Res. Lett. 1999, 26, 135–138.
  • Couston, L.A., Turbulent convection in subglacial lakes. J. Fluid Mech. 2021, 915, A31.
  • Daya, Z. and Ecke, R., Does turbulent convection feel the shape of the container?. Phys. Rev. Lett. 2001, 87, 184501.
  • de Wit, X.M., Guzmán, A.J.A., Madonia, M., Cheng, J.S., Clercx, H.J. and Kunnen, R.P., Turbulent rotating convection confined in a slender cylinder: the sidewall circulation. Phys. Rev. Fluids 2020, 5, 023502.
  • Driscoll, P.E. and Du, Z., Geodynamo conductivity limits. Geophys. Res. Lett. 2019, 46, 7982–7989.
  • Ecke, R.E. and Niemela, J.J., Heat transport in the geostrophic regime of rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 2014, 113, 114301.
  • Favier, B. and Knobloch, E., Robust wall states in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 2020, 895, R1.
  • Fuentes, J., Cumming, A., Castro-Tapia, M. and Anders, E.H., Heat transport and convective velocities in compositionally driven convection in neutron star and white dwarf interiors. Astrophys. J. 2023, 950, 73.
  • Garaud, P., Journey to the center of stars: The realm of low Prandtl number fluid dynamics. Phys. Rev. Fluids 2021, 6, 030501.
  • Gastine, T. and Aurnou, J.M., Latitudinal regionalization of rotating spherical shell convection. J. Fluid Mech. 2023, 954, R1.
  • Gastine, T., Wicht, J. and Aubert, J., Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 2016, 808, 690–732.
  • Globe, S. and Dropkin, D., Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. J. Heat Transf. 1959, 81, 24–28.
  • Grannan, A.M., Cheng, J.S., Aggarwal, A., Hawkins, E.K., Xu, Y., Horn, S., Sánchez-Álvarez, J. and Aurnou, J.M., Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection. J. Fluid Mech. 2022, 939, R1.
  • Greenspan, H. and Howard, L., On a time-dependent motion of a rotating fluid. J. Fluid Mech. 1963, 17, 385–404.
  • Guervilly, C., Fingering convection in the stably stratified layers of planetary cores. J. Geophys. Res. 2022, 127, e2022JE007350.
  • Guervilly, C., Cardin, P. and Schaeffer, N., Turbulent convective length scale in planetary cores. Nature 2019, 570, 368–371.
  • Hawkins, E.K., Cheng, J.S., Abbate, J.A., Pilegard, T., Stellmach, S., Julien, K. and Aurnou, J.M., Laboratory models of planetary core-style convective turbulence. Fluids 2023, 8, 106.
  • Horn, S. and Aurnou, J.M., Regimes of Coriolis-centrifugal convection. Phys. Rev. Lett. 2018, 120, 204502.
  • Horn, S. and Aurnou, J.M., Rotating convection with centrifugal buoyancy: Numerical predictions for laboratory experiments. Phys. Rev. Fluids 2019, 4, 073501.
  • Horn, S. and Aurnou, J.M., Tornado-like vortices in the quasi-cyclostrophic regime of Coriolis-centrifugal convection. J. Turbul. 2021, 22, 297–324.
  • Horn, S. and Schmid, P., Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection. J. Fluid Mech. 2017, 831, 182–211.
  • Horn, S. and Shishkina, O., Rotating non-oberbeck–boussinesq Rayleigh–Bénard convection in water. Phys. Fluids 2014, 26, 055111.
  • Horn, S., Shishkina, O. and Wagner, C., On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol. J. Fluid Mech. 2013, 724, 175–202.
  • Huang, S.D. and Xia, K.Q., Effects of geometric confinement in quasi-2-D turbulent Rayleigh–Bénard convection. J. Fluid Mech. 2016, 794, 639–654.
  • Jackson, A. and Finlay, C., Geomagnetic secular variation and its applications to the core. Treatise Geophys. 2015, 5, 137–184.
  • Johnson, D.H., Signal-to-noise ratio. Scholarpedia 2006, 1, 2088.
  • Jones, C.A., Planetary magnetic fields and fluid dynamos. Ann. Rev. Fluid Mech. 2011, 43, 583–614.
  • Jones, C. and Schubert, G., Thermal and compositional convection in the outer core. Treatise Geophys. 2015, 8, 131–185.
  • Julien, K., Knobloch, E., Rubio, A.M. and Vasil, G.M., Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 2012, 109, 254503.
  • Julien, K., Knobloch, E. and Werne, J., A new class of equations for rotationally constrained flows. Theor. Comput. Fluid Dyn. 1998, 11, 251–261.
  • Kang, W., Mittal, T., Bire, S., Campin, J.M. and Marshall, J., How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites?. Sci. Adv. 2022, 8, eabm4665.
  • King, E.M. and Aurnou, J.M., Turbulent convection in liquid metal with and without rotation. Proc. Natl. Acad. Sci. USA 2013, 110, 6688–6693.
  • King, E.M., Stellmach, S. and Aurnou, J.M., Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 2012, 691, 568–582.
  • Kolhey, P., Stellmach, S. and Heyner, D., Influence of boundary conditions on rapidly rotating convection and its dynamo action in a plane fluid layer. Phys. Rev. Fluids 2022, 7, 043502.
  • Kriaa, Q., Subra, E., Favier, B. and Le Bars, M., Effects of particle size and background rotation on the settling of particle clouds. Phys. Rev. Fluids 2022, 7, 124302.
  • Kunnen, R.P., The geostrophic regime of rapidly rotating turbulent convection. J. Turbul. 2021, 22, 267–296.
  • Lesher, C.E. and Spera, F.J., Thermodynamic and transport properties of silicate melts and magma. Encycl. Volcanoes 2015, 1, 113–141.
  • Li, X.M., He, J.D., Tian, Y., Hao, P. and Huang, S.D., Effects of Prandtl number in quasi-two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 2021, 915, A60.
  • Lide, D.R., CRC Handbook of Chemistry and Physics, Vol. 85, 2004. (CRC Press).
  • Lock, S.J. and Stewart, S.T., The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. J. Geophys. Res. 2017, 122, 950–982.
  • Long, R.S., Mound, J.E., Davies, C.J. and Tobias, S.M., Scaling behaviour in spherical shell rotating convection with fixed-flux thermal boundary conditions. J. Fluid Mech. 2020, 889, A7.
  • Lu, H.Y., Ding, G.Y., Shi, J.Q., Xia, K.Q. and Zhong, J.Q., Heat-transport scaling and transition in geostrophic rotating convection with varying aspect ratio. Phys. Rev. Fluids 2021, 6, L071501.
  • Maas, C. and Hansen, U., Dynamics of a terrestrial magma ocean under planetary rotation: A study in spherical geometry. Earth Planet. Sci. Lett. 2019, 513, 81–94.
  • Madonia, M., Guzmán, A.J.A., Clercx, H.J. and Kunnen, R.P., Velocimetry in rapidly rotating convection: spatial correlations, flow structures and length scales (a). Europhys. Lett. 2021, 135, 54002.
  • Madonia, M., Guzmán, A.J.A., Clercx, H.J. and Kunnen, R.P., Reynolds number scaling and energy spectra in geostrophic convection. J. Fluid Mech. 2023, 962, A36.
  • Malkus, W.V.R., The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 1954, 225, 196–212.
  • Melosh, H., Giant impacts and the thermal state of the early Earth. Orig. Earth 1990, 69–83.
  • Moll, R., Garaud, P., Mankovich, C. and Fortney, J., Double-diffusive erosion of the core of Jupiter. Astrophys. J. 2017, 849, 24.
  • Noir, J., Calkins, M., Lasbleis, M., Cantwell, J. and Aurnou, J., Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 2010, 182, 98–106.
  • Oliver, T.G., Jacobi, A.S., Julien, K. and Calkins, M.A., Small scale quasigeostrophic convective turbulence at large Rayleigh number. Phys. Rev. Fluids 2023, 8, 093502.
  • O'Rourke, J.G., Venus: A thick basal magma ocean may exist today. Geophys. Res. Lett. 2020, 47, e2019GL086126.
  • O'Rourke, J.G. and Stevenson, D.J., Powering Earth's dynamo with magnesium precipitation from the core. Nature 2016, 529, 387–389.
  • Posner, E.S., Rubie, D.C., Frost, D.J. and Steinle-Neumann, G., Experimental determination of oxygen diffusion in liquid iron at high pressure. Earth Planet. Sci. Lett. 2017, 464, 116–123.
  • Qiu, X.L., Shang, X.D., Tong, P. and Xia, K.Q., Velocity oscillations in turbulent Rayleigh–Bénard convection. Phys. Fluids 2004, 16, 412–423.
  • Ricard, Y., Alboussière, T., Labrosse, S., Curbelo, J. and Dubuffet, F., Fully compressible convection for planetary mantles. Geophys. J. Int. 2022, 230, 932–956.
  • Roberts, P.H. and Aurnou, J.M., On the theory of core-mantle coupling. Geophys. Astrophys. Fluid Dyn. 2012, 106, 157–230.
  • Roberts, P.H. and King, E.M., On the genesis of the Earth's magnetism. Rep. Prog. Phys. 2013, 76, 096801.
  • Schlichting, H. and Gersten, K., Boundary-Layer Theory, 2016. (springer: Berlin).
  • Schumacher, J. and Sreenivasan, K.R., Colloquium: Unusual dynamics of convection in the Sun. Rev. Mod. Phys. 2020, 92, 041001.
  • Schwaiger, T., Gastine, T. and Aubert, J., Force balance in numerical geodynamo simulations: A systematic study. Geophys. J. Int. 2019, 219, S101–S114.
  • Settles, G.S. and Hargather, M.J., A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 2017, 28, 042001.
  • Shang, X.D., Qiu, X.L., Tong, P. and Xia, K.Q., Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 2003, 90, 074501.
  • Shinpaugh, K., Simpson, R., Wicks, A., Ha, S. and Fleming, J., Signal-processing techniques for low signal-to-noise ratio laser Doppler velocimetry signals. Expt. Fluids 1992, 12, 319–328.
  • Shishkina, O., Rayleigh–Bénard convection: The container shape matters. Phys. Rev. Fluids 2021, 6, 090502.
  • Shishkina, O., Emran, M.S., Grossmann, S. and Lohse, D., Scaling relations in large-Prandtl-number natural thermal convection. Phys. Rev. Fluids 2017, 2, 103502.
  • Siggia, E.D., High Rayleigh number convection. Ann. Rev. Fluid Mech. 1994, 26, 137–168.
  • Soderlund, K.M., Ocean dynamics of outer solar system satellites. Geophys. Res. Lett. 2019, 46, 8700–8710.
  • Solomatov, V., Fluid dynamics of a terrestrial magma ocean. Orig. Earth Moon 2000, 1, 323–338.
  • Sprague, M., Julien, K., Knobloch, E. and Werne, J., Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 2006, 551, 141–174.
  • Stellmach, S. and Hansen, U., Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 2004, 70, 056312.
  • Stixrude, L., Scipioni, R. and Desjarlais, M.P., A silicate dynamo in the early Earth. Nat. Commun. 2020, 11, 935.
  • Studinger, M., Bell, R.E. and Tikku, A.A., Estimating the depth and shape of subglacial Lake Vostok's water cavity from aerogravity data. Geophys. Res. Lett. 2004, 31, L12401.
  • Sun, C., Cheung, Y.H. and Xia, K.Q., Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 2008, 605, 79–113.
  • Vogt, T., Horn, S. and Aurnou, J.M., Oscillatory thermal–inertial flows in liquid metal rotating convection. J. Fluid Mech. 2021, 911, A5.
  • Warn-Varnas, A., Fowlis, W.W., Piacsek, S. and Lee, S.M., Numerical solutions and laser-Doppler measurements of spin-up. J. Fluid Mech. 1978, 85, 609–639.
  • Weiss, S. and Ahlers, G., The large-scale flow structure in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 2011, 688, 461–492.
  • Wen, B., Goluskin, D., LeDuc, M., Chini, G.P. and Doering, C.R., Steady Rayleigh–Bénard convection between stress-free boundaries. J. Fluid Mech. 2020, 905, R4.
  • Xi, H.D., Lam, S. and Xia, K.Q., From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 2004, 503, 47–56.
  • Xia, K.Q., Lam, S. and Zhou, S.Q., Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 2002, 88, 064501.
  • Xu, Y., Horn, S. and Aurnou, J.M., Thermoelectric precession in turbulent magnetoconvection. J. Fluid Mech. 2022, 930, A8.
  • Yadav, R.K., Gastine, T., Christensen, U.R., Wolk, S.J. and Poppenhaeger, K., Approaching a realistic force balance in geodynamo simulations. Proc. Natl. Acad. Sci. USA 2016, 113, 12065–12070.
  • Zambra, C.E., Gonzalez-Olivares, L., González, J. and Clausen, B., Temporal evolution of cooling by natural convection in an enclosed magma chamber. Processes 2022, 10, 108.
  • Zhang, Y., Hou, M., Liu, G., Zhang, C., Prakapenka, V.B., Greenberg, E., Fei, Y., Cohen, R. and Lin, J.F., Reconciliation of experiments and theory on transport properties of iron and the geodynamo. Phys. Rev. Lett. 2020, 125, 078501.
  • Zhang, X., Ecke, R.E. and Shishkina, O., Boundary zonal flows in rapidly rotating turbulent thermal convection. J. Fluid Mech. 2021, 915, A62.
  • Ziegler, L. and Stegman, D., Implications of a long-lived basal magma ocean in generating Earth's ancient magnetic field. Geochem. Geophys. Geosys. 2013, 14, 4735–4742.