132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Distribution of maize ear rot in southwestern Ethiopia and its association with biophysical factors

ORCID Icon, , , &
Pages 1-21 | Received 17 May 2023, Accepted 24 Nov 2023, Published online: 18 Mar 2024

References

  • Abate T, Shiferaw B, Menkir A, Wegary D, Kebede Y, Tesfaye K, Kassie M, Bogale G, Tadesse B, Keno T. 2015. Factors that transformed maize productivity in Ethiopia. Food Sec. 7(5):965–981. doi: 10.1007/s12571-015-0488-z.
  • Abedi-Tizaki M, Sabbagh S. 2011. Fungi associated with harvested corn grains of Golestan province in Iran. Ann Biol Res. 2(5):681–688.
  • Ajanga S, Hillocks R. 2000. Maize cob rot in Kenya and its association with stalk borer damage. Crop Prot. 19(5):297–300. doi: 10.1016/S0261-2194(00)00020-X.
  • Atukwase A, Kaaya A, Muyanja C. 2012. Dynamics of Fusarium and fumonisins in maize during storage–a case of the traditional storage structures commonly used in Uganda. Food Control. 26(1):200–205. doi: 10.1016/j.foodcont.2012.01.016.
  • Belete A. 2020. Analysis of technical efficiency in maize production in Guji Zone: stochastic frontier model. Agric Food Secur. 9(1):1–15. doi: 10.1186/s40066-020-00270.
  • Belete E, Ayalew A, Ahmed S. 2013. Associations of biophysical factors with faba bean root rot (Fusarium solani) epidemics in the northeastern highlands of Ethiopia. Crop Prot. 52:39–46. doi: 10.1016/j.cropro.2013.05.003.
  • Bigirwa G, Kaaya AN, Sseruwu G, Adipala E, Okanya S. 2007. Incidence and severity of maize ear rots and factors responsible for their occurrence in Uganda. J Appl Sci. 7(23):3780–3785. doi: 10.3923/jas.2007.3780.3785.
  • Binyam T, Girma A. 2016. Detection of fungi infecting maize (Zea mays L.) seeds in different storages around Jimma, southwestern Ethiopia. J Plant Pathol Microbiol. 7(3):12–33. doi: 10.4172/2157-7471.1000338.
  • Champeil A, Fourbet JF, Doré T, Rossignol L. 2004. Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop Prot. 23(6):531–537. doi: 10.1016/j.cropro.2003.10.011.
  • Doohan F, Brennan J, Cooke B. 2003. Influence of climatic factors on Fusarium species pathogenic to cereals. Eur J Plant Pathol. 109(7):755–768. doi: 10.1023/A:1026090626994.
  • Dragich M, Nelson S. 2014. Gibberella and Fusarium ear rots of maize in Hawai’i. Plant Dis. 102:2291–2298.
  • Duan C, Wang B, Sun F, Yang Z, Zhu Z, Wang X. 2020. Occurrence of maize ear rot caused by Fusarium fujikuroi in China. Plant Dis. 104(2):587–587. doi: 10.1094/PDIS-01-19-0154-PDN.
  • Ekwomadu T, Gopane R, Mwanza M. 2018. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Sci Nutr. 6(4):884–890. doi: 10.1002/fsn3.561.
  • Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna B. 2022. Global maize production, consumption and trade: trends and R&D implications. Food Sec. 14(5):1295–1319. doi: 10.1007/s12571-022-01288-7.
  • Fandohan P, Gnonlonfin B, Hell K, Marasas WFO, Wingfield MJ. 2005. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Int J Food Microbiol. 99(2):173–183. doi: 10.1016/j.ijfoodmicro.2004.08.012.
  • Fininsa C, Yuen J. 2001. Association of maize rust and leaf blight epidemics with cropping systems in Hararghe highlands, eastern Ethiopia. Crop Prot. 20(8):669–678. doi: 10.1016/S0261-2194(01)00033-3.
  • Garbaba C, Diriba S, Ocho FL, Hensel O. 2018. Potential for mycotoxin-producing fungal growth in various agro-ecological settings and maize storage systems in southwestern Ethiopia. J Stored Prod Res. 76:22–29. doi: 10.1016/j.jspr.2017.12.001.
  • Geary PA, Chen G, Kimanya ME, Shirima CP, Oplatowska-Stachowiak M, Elliott CT, Routledge MN, Gong YY. 2016. Determination of multi-mycotoxin occurrence in maize based porridges from selected regions of Tanzania by liquid chromatography tandem mass spectrometry (LC-MS/MS), a longitudinal study. Food Control. 68:337–343. doi: 10.1016/j.foodcont.2016.04.018.
  • Hajihasani M, Hajihassani A, Khaghani S. 2012. Incidence and distribution of seed-borne fungi associated with wheat in Markazi Province, Iran. Afr J Biotechnol. 11(23):6290–6295. doi: 10.5897/AJB11.3838.
  • Hamd M, Shazia I, Iftikhar A, Fateh F, Kazmi M. 2013. Identification and characterization of post harvest fungal pathogens of mango from domestic markets of Punjab. Int J Agron Plant Prod. 4(4):650–658.
  • Hocking A. 2006. Aspergillus and related teleomorphs. In: Blackburn CW, editor. Food spoilage microorganisms. 1st ed. Abington: Woodhead Publishing Limited; p. 451–487. doi: 10.1533/9781845691417.4.451.
  • Jeffers D. 2002. Maize pathology activities at CIMMYT-Mexico. Paper presented to Reviewers. CIMMYT; Sep 23; El Batan, Mexico.
  • Logrieco A, Battilani P, Marco C, Jiang Y, Geert H, Alessandra L, George M, Akos M, Alejandro O, Marco P, et al. 2021. Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group. Plant Dis. 105(3):525–537. doi: 10.1094/PDIS-06-20-1322-FE.
  • Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G. 2003. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol. 109(7):645–667. doi: 10.1023/A:1026033021542.
  • Logrieco A, Mulè G, Moretti A, Bottalico A. 2002. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol. 108(7):597–609. doi: 10.1023/A:1020679029993.
  • Magnoli C, Violante M, Combina M, Palacio G, Dalcero A. 2003. Mycoflora and ochratoxin‐producing strains of Aspergillus section Nigri in wine grapes in Argentina. Lett Appl Microbiol. 37(2):179–184. doi: 10.1046/j.1472-765X.2003.01376.x.
  • Maxwell J, Charles A, Meshack O, Zeyaur R. 2018. Impact of companion cropping on incidence and severity of maize ear rots and mycotoxins in Western Kenya. Afr J Agric Res. 13(41):2224–2231. doi: 10.5897/AJAR2018.13396.
  • McCullagh P, Nelder J. 1989. Generalized linear models. 2nd ed. London: Chapman and Hall. (Monographs on statistics and applied probability; 37). doi: 10.1007/978-1-4899-3242-6.
  • Mesterházy Á, Lemmens M, Reid LM. 2012. Breeding for resistance to ear rots caused by Fusarium spp. in maize–a review. Plant Breed. 131(1):1–19. doi: 10.1111/j.1439-0523.2011.01936.x.
  • Misgana M, Yesuf E, Awoke T. 2015. Evaluation of maize variety for ear rot (Fusarium graminearum) in South Omo zone of Ethiopia. J Plant Sci. 3(4):212–215. doi: 10.11648/j.jps.20150304.17.
  • Munkvold G. 2003a. Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol. 41(1):99–116. doi: 10.1146/annurev.phyto.41.052002.095510.
  • Munkvold G. 2003b. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur J Plant Pathol. 109(7):705–713. doi: 10.1023/A:1026078324268.
  • Pfordt A, Romero L, Schiwek S, Karlovsky P, Von Tiedemann A. 2020. Impact of environmental conditions and agronomic practices on the prevalence of fusarium species associated with ear-and stalk rot in maize. Pathogens. 9(3):236. doi: 10.3390/pathogens9030236.
  • Reid L, Zhu X, Ma B. 2001. Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant Soil. 237(1):1–14. doi: 10.1023/A:1013311703454.
  • SAS Institute. 2015. The GENMOD procedure. SAS/STAT user’s guide, version 8. GENMOD. Cary: SAS institute Inc.
  • Scarpino V, Reyneri A, Vanara F, Scopel C, Causin R, Blandino M. 2015. Relationship between European Corn Borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. Field Crops Res. 183:69–78. doi: 10.1016/j.fcr.2015.07.014.
  • USDA (United States Department of Agriculture). 2022. World agricultural production. Global Market Analysis. Circular Series, WAP 7–23, 59–65. doi: 10.32317/2221-1055.201907059.
  • Van Dijk M, Morley T, van Loon M, Reidsma P, Tesfaye K, van Ittersum MK. 2020. Reducing the maize yield gap in Ethiopia: decomposition and policy simulation. Agric Syst. 183:102828. doi: 10.1016/j.agsy.2020.102828.
  • Vigier B, Reid LM, Dwyer LM, Stewart DW, Sinha RC, Arnason JT, Butler G. 2001. Maize resistance to gibberella ear rot: symptoms, deoxynivalenol, and yield1. Can J Plant Pathol. 23(1):99–105. doi: 10.1080/07060660109506915.
  • Yuen J. 2006. Deriving decision rules. Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences. doi: 10.1094/phi-a-2006-0517-01.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.