30
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Insecticidal efficacy of some apiaceae plant metabolites against glyphodes pyloalis walker (lepidoptera: pyralidae)

, ORCID Icon, , &
Pages 35-53 | Received 01 Oct 2023, Accepted 25 Mar 2024, Published online: 08 Apr 2024

References

  • Aboelhadid SM, Arafa WM, Abdel-Baki AAS, Sokmen A, Al-Quraishy S, Hassan AO, Kamel AA. 2021. Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone. PLoS One. 16(12):e0260172. doi: 10.1371/journal.pone.0260172.
  • Addy SK, Goodman RN. 1972. Polyphenol oxidase and peroxidase in apple leaves inoculated with a virulent or an avirulent strain for Ervinia amylovora. Ind. Phytopathol. 25:575–579.
  • Aghaee Pour S, Shahriari M, Zibaee A, Mojarab-Mahboubkar M, Sahebzadeh N, Hoda H. 2022. Toxicity, antifeedant and physiological effects of trans-anethole against Hyphantria cunea Drury (Lepidoptera: arctiidae). Pestic Biochem Physiol. 185:105135. doi: 10.1016/j.pestbp.2022.105135.
  • Basij M, Sahebzadeh N, Shahriari M, Panahandeh S. 2023. Insecticidal potential of Ajwain essential oil and its major components against Chilo suppressalis Walker. J Plant Dis Prot. 130(4):735–745. doi: 10.1007/s41348-023-00762-4.
  • Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F. 2017. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Indust Crop Prod. 96:186–195. doi: 10.1016/j.indcrop.2016.11.059.
  • Bernfeld P. 1955. Amylases, α and β. Meth. Enzymol. 1:149–158.
  • Bezzar-Bendjazia R, Kilani-Morakchi S, Maroua F, Aribi N. 2017. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: drosophilidae). Pestic Biochem Physiol. 143:135–140. doi: 10.1016/j.pestbp.2017.08.006.
  • Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV. 2008. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol C Toxicol Pharmacol. 148(1):1–5. doi: 10.1016/j.cbpc.2008.02.003.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 7(2):88–95. doi: 10.1016/0006-2952(61)90145-9.
  • Giatropoulos A, Koliopoulos G, Pantelakis PN, Papachristos D, Michaelakis A. 2023. Evaluating the sublethal effects of Origanum vulgare essential oil and Carvacrol on the biological characteristics of Culex pipiens biotype molestus (Diptera: culicidae). Insects. 14(4):400. doi: 10.3390/insects14040400.
  • Goharrostami M, Sendi JJ, Hosseini R, Mahmoodi NOA. 2022. Effect of thyme essential oil and its two components on toxicity and some physiological parameters in mulberry pyralid Glyphodes pyloalis Walker. Pestic Biochem Physiol. 188:105220. doi: 10.1016/j.pestbp.2022.105220.
  • Gong P, Chen D, Wang C, Li M, Li X, Zhang Y, Li X, Zhu X. 2020. Susceptibility of four species of aphids in wheat to seven insecticides and its relationship to detoxifying enzymes. Front Physiol. 11:623612. doi: 10.3389/fphys.2020.623612.
  • Han Z, Moores GD, Denholm I, Devonshire AL. 1998. Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 62(3):164–171. doi: 10.1006/pest.1998.2373.
  • Hawkins NJ, Bass C, Dixon A, Neve P. 2019. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc. 94(1):135–155. doi: 10.1111/brv.12440.
  • Hill MP, Macfadyen S, Nash MA. 2017. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. Peer J. 5:e4179. doi: 10.7717/peerj.4179.
  • Isman MB, Koul O, Luczynski A, Kaminski J. 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J Agric Food Chem. 38(6):1406–1411. doi: 10.1021/jf00096a024.
  • Isman MB. 2020. Botanical insecticides in the twenty-first century-fulfilling their promise? Annu Rev Entomol. 65(1):233–249. doi: 10.1146/annurev-ento-011019-025010.
  • Kim SW, Kang J, Park IK. 2013. Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. J. Asia Pac. Entomol. 16(4):443–448. doi: 10.1016/j.aspen.2013.07.002.
  • Kostić I, Lazarević J, Šešlija Jovanović D, Kostić M, Marković T, Milanović S. 2021. Potential of essential oils from anise, dill and fennel seeds for the gypsy moth control. Plants (Basel). 10(10):2194. doi: 10.3390/plants10102194.
  • Kostić I, Milanović S, Kostić M, Šešlija Jovanović D, Ćalić D, Jankovský L, Lazarević J. 2022. Antifeeding, toxic, and growth-reducing activity of trans-anethole and s-(+)-carvone against larvae of the Gypsy Moth Lymantria dispar (L.). Agron. 12(12):3049. doi: 10.3390/agronomy12123049.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1):265–275.
  • Mahajan, E, Singh, S, Kaur, S, Sohal, SK. 2022. The genotoxic, cytotoxic and growth regulatory effects of plant secondary metabolite β-caryophyllene on polyphagous pest Spodoptera litura (Fabricius) (Lepidoptera: noctuidae). Toxicon. 219:106930. doi: 10.1016/j.toxicon.2022.09.016.
  • McCord JM, Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 244(22):6049–6055. doi: 10.1016/S0021-9258(18)63504-5.
  • Motta JVDO, Carneiro LS, Martínez LC, Bastos DSS, Resende MTCS, Castro BMC, Neves MM, Zanuncio JC, Serrão JE. 2023. Midgut cell damage and oxidative stress in Partamona helleri (Hymenoptera: apidae) workers caused by the insecticide lambda-cyhalothrin. Antioxidants (Basel). 12(8):1510. doi: 10.3390/antiox12081510.
  • Nasr M, Sendi JJ, Moharramipour S, Zibaee A. 2017. Evaluation of Origanum vulgare L. essential oil as a source of toxicant and an inhibitor of physiological parameters in diamondback moth, Plutella xylustella L. (Lepidoptera: pyralidae). J. Saudi Soc. Agri. Sci. 16(2):184–190. doi: 10.1016/j.jssas.2015.06.002.
  • Oftadeh M, Sendi JJ, Ebadollahi A, Setzer WN, Krutmuang P. 2021. Mulberry protection through flowering-stage essential oil of Artemisia annua against the lesser mulberry pyralid, Glyphodes pyloalis Walker. Foods. 10(2):210. doi: 10.3390/foods10020210.
  • Oftadeh M, Sendi JJ, Ebadollahi A., 2020. Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). Pestic Biochem Physiol. 170:104702. doi: 10.1016/j.pestbp.2020.104702.
  • Oppenoorth F, Van der Pas L, Houx N. 1979. Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pestic. Biochem. Physiol. 11(1-3):176–188. doi: 10.1016/0048-3575(79)90057-9.
  • Oppert B, Kramer KJ, McGaughey WH. 1997. Rapid microplate assay for substrates and inhibitors of proteinase mixtures. Biotechniques. 23(1):70–72. doi: 10.2144/97231bm14.
  • Pavela R, Maggi F, Cianfaglione K, Bruno M, Benelli G. 2018. Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem Biodivers. 15(1):e1700382. doi: 10.1002/cbdv.201700382.
  • Pavela R. 2014. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd.(Lep., Noctuidae) larvae. Indus Crop Prod. 60:247–258. doi: 10.1016/j.indcrop.2014.06.030.
  • Pavela R. 2015. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res. 114(10):3835–3853. doi: 10.1007/s00436-015-4614-9.
  • Piri A, Sahebzadeh N, Zibaee A, Sendi JJ, Shamakhi L, Shahriari M. 2020. Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: gelechiidae). Chemosphere. 256:127103. doi: 10.1016/j.chemosphere.2020.127103.
  • Rajkumar V, Gunasekaran C, Christy IK, Dharmaraj J, Chinnaraj P, Paul CA. 2019. Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pestic Biochem Physiol. 156:138–144. doi: 10.1016/j.pestbp.2019.02.016.
  • Sefidkon F, Dabiri M, Mohammad N. 2002. Analysis of the oil of Heracleum persicum L. (leaves and flowers). J. Essen. Oil Res. 14(4):295–297. doi: 10.1080/10412905.2002.9699860.
  • Seo SM, Kim J, Kang J, Koh SH, Ahn YJ, Kang KS, Park IK. 2014. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essentials oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic Biochem Physiol. 113:55–61. doi: 10.1016/j.pestbp.2014.06.001.
  • Shahriari M, Sahebzadeh N, Zibaee A. 2017. Effect of Teucrium polium (Lamiaceae) essential oil on digestive enzyme activities and energy reserves of Ephestia kuehniella (Lepidoptera: pyralidae). Invert Surv J. 14:182–189. doi: 10.25431/1824307X/isj.v14i1.182-189.
  • Shahriari M, Sahebzadeh N. 2017. Effect of diallyl disulfide on physiological performance of Ephestia kuehniella Zeller (Lepidoptera: pyralidae). Arch. Phytopathol Plant Protect. 50(1-2):33–46. doi: 10.1080/03235408.2016.1253252.
  • Shahriari M, Zibaee A, Sahebzadeh N, Shamakhi L. 2018. Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: pyralidae). Pestic Biochem Physiol. 150:40–47. doi: 10.1016/j.pestbp.2018.06.015.
  • Shahriari M, Zibaee A, Shamakhi L, Sahebzadeh N, Naseri D, Hoda H. 2019. Bio-efficacy and physiological effects of Eucalyptus globulus and Allium sativum essential oils against Ephestia kuehniella Zeller (Lepidoptera: pyralidae). Toxin Rev. 39(4):422–433. doi: 10.1080/15569543.2018.1554588.
  • Silva CP, Terra WRM. 1995. An α-glucosidase from perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: pyrrhocoridae) midgut cells: purification and properties. Insect Biochem Mole Biol. 25(4):487–494. doi: 10.1016/0965-1748(94)00088-G.
  • Su MW, Fang YL, Tao WQ, Zeng GY, Ma WE, Zhang ZN. 2008. Identification and field evaluation of the sex pheromone of an invasive pest, the fall webworm Hyphantria cunea in China. Chin Sci Bull. 53(4):555–560. doi: 10.1007/s11434-008-0124-9.
  • Tsujita T, Ninomiya H, Okuda H. 1989. p-Nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. J Lipid Res. 30(7):997–1004. doi: 10.1016/S0022-2275(20)38302-4.
  • Waldbauer GP. 1968. The consumption and utilization of foods by insects. Adv Insect Physiol. 5:229–288.
  • Wang Y, Oberley LW, Murhammer DW. 2001. Evidence of oxidative stress following the viral infection of two Lepidopteran insect cell lines. Free Radic Biol Med. 31(11):1448–1455. doi: 10.1016/S0891-5849(01)00728-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.