89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Boundary regularity for anisotropic minimal Lipschitz graphs

&
Pages 15-37 | Received 19 Aug 2023, Accepted 08 Dec 2023, Published online: 20 Dec 2023

References

  • Allard, W. K. (1972). On the first variation of a varifold. Ann. Math. (2) 95:417–491. DOI: 10.2307/1970868.
  • Allard, W. K. (1975). On the first variation of a varifold: boundary behavior. Ann. Math. (2) 101:418–446. DOI: 10.2307/1970934.
  • Ghomi, M., Spruck, J. (2022). Total curvature and the isoperimetric inequality in cartan–hadamard manifolds. J. Geom. Anal. 32(2):1–54. DOI: 10.1007/s12220-021-00801-2.
  • Bourni, T. (2016). Allard-type boundary regularity for c1,α boundaries. J. Adv. Cal. Var. 9(2): 143–161. DOI: 10.1515/acv-2014-0032.
  • Allard, W. K. (1974). A characterization of the area integrand. Symposia Mathematica 14: 429–444.
  • De Philippis, G., De Rosa, A., Ghiraldin, F. (2018). Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. Commun. Pure Appl. Math. 71(6):1123–1148. DOI: 10.1002/cpa.21713.
  • De Philippis, G., De Rosa, A., Ghiraldin, F. (2020). Existence results for minimizers of parametric elliptic functionals. J. Geom. Anal. 30(2):1450–1465. DOI: 10.1007/s12220-019-00165-8.
  • De Philippis, G., De Rosa, A. (2023). The anisotropic min-max theory: Existence of anisotropic minimal and cmc surfaces. Commun. Pure Appl. Math. DOI: 10.1002/cpa.22189.
  • De Rosa, A. (2018). Minimization of anisotropic energies in classes of rectifiable varifolds. SIAM J. Math. Anal. 50(1):162–181. DOI: 10.1137/17M1112479.
  • Harrison, J., Pugh, H. (2017). General methods of elliptic minimization. Cal. Var. Partial Differ. Equ. 56(4):1–25.
  • De Lellis, C. (2006). Lecture notes on rectifiable sets, densities, and tangent measures. Preprint 23.
  • De Rosa, A., Lussardi, L. (2022). On the anisotropic kirchhoff-plateau problem. Math. Eng. 4(2):1–13. DOI: 10.3934/mine.2022011.
  • Tione, R. (2021). Minimal graphs and differential inclusions. Commun. Partial Differ. Equ. 46(6):1162–1194. DOI: 10.1080/03605302.2020.1871367.
  • De Lellis, C., De Rosa, A., Ghiraldin, F. (2019). A direct approach to the anisotropic plateau problem. Adv. Cal. Var. 12(2):211–223. DOI: 10.1515/acv-2016-0057.
  • De Rosa, A., Kolasiński, S. Equivalence of the ellipticity conditions for geometric variational problems. Commun. Pure Appl. Math. 73(11):2473–2515. DOI: 10.1002/cpa.21890.
  • Paiva, J. Á., Thompson, A. C. (2004). Volumes on normed and Finsler spaces. In: David Bao, Robert L. Bryant, Shiing-Shen Chern, and Zhongmin Shen, eds. A Sampler of Riemann-Finsler Geometry, Vol. 50. Cambridge University Press. pp. 1–48.
  • Busemann, H., Ewald, G., Shephard, G. (1962). Convex bodies and convexity on grassmann cones. Arch. Math. 13(1):512–526. DOI: 10.1007/BF01650101.
  • Busemann, H., Ewald, G., Shephard, G. C. (1963). Convex bodies and convexity on grassmann cones. Math. Ann. 151(1):1–41. DOI: 10.1007/BF01343323.
  • Almgren, J. F. J. (1968). Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. (2) 87:321–391. DOI: 10.2307/1970587.
  • Duzaar, F., Steffen, K. (2002). Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. fur die reine und Angew. Math. 546:73–138
  • Schoen, R., Simon, L., Almgren, F. J. (1977). Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. Acta Math. 139:217–265. DOI: 10.1007/BF02392238.
  • De Philippis, G., Maggi, F. (2015). Regularity of free boundaries in anisotropic capillarity problems and the validity of young’s law. Arch. Ratio. Mech. Anal. 216(2):473–568. DOI: 10.1007/s00205-014-0813-2.
  • Figalli, A. (2017). Regularity of codimension 1 minimizing currents under minimal assumptions on the integrand. J. Differ. Geom. 106(3):371–391.
  • Hardt, R. M. (1977). On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand. Commun. Partial Differ. Equ. 2(12):1163–1232. DOI: 10.1080/03605307708820058.
  • Lin, F.-H. (1985). Regularity for a class of parametric obstacle problems (integrand, integral current, prescribed mean curvature, minimal surface system). PhD thesis, University of Minnesota.
  • De Philippis, G., De Rosa, A., Hirsch, J. (2019). The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete Continuous Dyn. Sys. 39(12):7031–7056. DOI: 10.3934/dcds.2019243.
  • Allard, W. K. (1986). An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled. In: Allard, F. J., Almgren Jr., W. K., eds. Geometric Measure Theory and the Calculus of Variations, Proceedings of Symposia in Pure Mathematics, Vol. 44.
  • De Lellis, C., De Philippis, G., Kirchheim, B., Tione, R. (2021). Geometric measure theory and differential inclusions. Ann. Faculté des Sci. de Toulouse: Mathématiques Ser. 6 30(4):899–960.
  • De Rosa, A., Tione, R. (2022). Regularity for graphs with bounded anisotropic mean curvature. Invent. Math. 230(2):463–507. DOI: 10.1007/s00222-022-01129-6.
  • De Lellis, C., De Philippis, G., Hirsch, J., Massaccesi, A. (2018). On the boundary behavior of mass-minimizing integral currents. ArXiv e-prints.
  • De Lellis, C., Nardulli, S., Steinbrüchel, S. (2021). An allard-type boundary regularity theorem for 2d minimizing currents at smooth curves with arbitrary multiplicity. arXiv preprint arXiv:2111.02991.
  • Nardulli, S., Resende, R. (2022). Density of the boundary regular set of 2d area minimizing currents with arbitrary codimension and multiplicity. arXiv preprint arXiv:2204.11947.
  • Hardt, R., Simon, L. Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. Math. (2) 110(3):439–486. DOI: 10.2307/1971233.
  • Federer, H. (1969). Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 153. New York: Springer-Verlag.
  • Simon, L. (2014). Introduction to Geometric Measure Theory. Tsinghua Lectures.
  • Krantz, S. G., Parks, H. R. (1999). The Geometry of Domains in Space. Boston: Springer.
  • Hirsch, J., Tione, R. (2021). On the constancy theorem for anisotropic energies through differential inclusions. Cal. Var. Partial Differ. Equ. 60(3):1–52.
  • De Lellis, C., Nardulli, S., Steinbrüchel, S. (2023). Uniqueness of boundary tangent cones for 2-dimensional area-minimizing currents. Nonlinear Anal. 230:113235. DOI: 10.1016/j.na.2023.113235.
  • De Lellis, C., Spadaro, E. (2011). Q-valued functions revisited. Mem. Amer. Math. Soc. 211(991):vi + 79. DOI: 10.1090/S0065-9266-10-00607-1.
  • Evans, L. C. (2010). Partial Differential Equations, Vol. 19. Providence, RI: American Mathematical Society.
  • Beck, L. (2007). Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case. Manuscripta Math. 123(4):453–491. DOI: 10.1007/s00229-007-0100-8.
  • Beck, L. (2009). Boundary regularity for elliptic problems with continuous coefficients. J. Convex Anal 16(1):287–320.
  • Simon, L. (1996). Theorems on Regularity and Singularity of Energy Minimizing Maps. Basel: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.