213
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Logarithmic Gross-Pitaevskii equation

&
Pages 88-120 | Received 06 Jun 2023, Accepted 15 Dec 2023, Published online: 29 Dec 2023

References

  • Béthuel, F., Saut, J.-C. (1999). Travelling waves for the Gross-Pitaevskii equation. I. Ann. Inst. Henri Poincaré, Phys. Théor. 70(2):147–238.
  • Gallo, C. (2008). The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. Commun. Partial Differ. Equ. 33(5):729–771. DOI: 10.1080/03605300802031614.
  • Gérard, P. (2006). The Cauchy problem for the Gross-Pitaevskii equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5):765–779. DOI: 10.1016/j.anihpc.2005.09.004.
  • Gérard, P. (2008). The Gross-Pitaevskii equation in the energy space. In: Stationary and Time Dependent Gross-Pitaevskii Equations, vol. 473 of Contemporary Mathematics. Providence, RI: American Mathematical Society, pp. 129–148.
  • Zhidkov, P. E. (1992). On the existence of the solution of the Cauchy problem and the stability of kink solutions of the nonlinear Schrödinger equation. Sibirsk. Mat. Zh. 33(2):73–79, 220.
  • Zhidkov, P. E. (2001). Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, vol. 1756 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.
  • Killip, R., Murphy, J., Visan, M. (2016). The final-state problem for the cubic-quintic NLS with nonvanishing boundary conditions. Anal. PDE 9(7):1523–1574. DOI: 10.2140/apde.2016.9.1523.
  • Białynicki-Birula, I., Mycielski, J. (1976). Nonlinear wave mechanics. Ann. Phys. 100(1–2):62–93. DOI: 10.1016/0003-4916(76)90057-9.
  • Yasue, K. (1978). Quantum mechanics of nonconservative systems. Ann. Phys. 114(1–2):479–496. DOI: 10.1016/0003-4916(78)90279-8.
  • Hansson, T., Anderson, D., Lisak, M. (2009). Propagation of partially coherent solitons in saturable logarithmic media: a comparative analysis. Phys. Rev. A 80(3):033819. DOI: 10.1103/PhysRevA.80.033819.
  • Krolikowski, W., Edmundson, D., Bang, O. (2000). Unified model for partially coherent solitons in logarithmically nonlinear media. Phys. Rev. E 61:3122–3126. DOI: 10.1103/PhysRevE.61.3122.
  • Buljan, H., Šiber, A., Soljačić, M., Schwartz, T., Segev, M., Christodoulides, D. (2003). Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. Phys. Rev. E 68(3):036607. DOI: 10.1103/PhysRevE.68.036607.
  • Hefter, E. F. (1985). Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. A 32:1201–1204. DOI: 10.1103/physreva.32.1201.
  • Martino, S. D., Falanga, M., Godano, C., Lauro, G. (2003). Logarithmic Schrödinger-like equation as a model for magma transport. Europhys. Lett. 63:472–475. DOI: 10.1209/epl/i2003-00547-6.
  • Zloshchastiev, K. G. (2010). Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16:288–297. DOI: 10.1134/S0202289310040067.
  • Avdeenkov, A. V., Zloshchastiev, K. G. (2011). Quantum bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent. J. Phys. B: At. Mol. Opt. Phys. 44(19):195303. DOI: 10.1088/0953-4075/44/19/195303.
  • Zloshchastiev, K. G. (2011). Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory. Acta Phys. Polon. B 42(2):261–292.
  • Cazenave, T., Haraux, A. (1980). Equations d’évolution avec non linéarité logarithmique. Annales de la faculté de sciences de Toulouse, 5e série II:21–55. DOI: 10.5802/afst.543.
  • Hayashi, M. (2018). A note on the nonlinear Schrödinger equation in a general domain. Nonlinear Anal. 173:99–122. DOI: 10.1016/j.na.2018.03.017.
  • Carles, R., Gallagher, I. (2018). Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math. J. 167(9):1761–1801. DOI: 10.1215/00127094-2018-0006.
  • Guerrero, P., López, J., Nieto, J. (2010). Global solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. Real World Appl. 11(1):79–87. DOI: 10.1016/j.nonrwa.2008.10.017.
  • Segal, I. (1963). Non-linear semi-groups. Ann. Math. (2) 78:339–364. DOI: 10.2307/1970347.
  • Farina, A., Saut, J.-C., eds. Stationary and Time Dependent Gross-Pitaevskii Equations, vol. 473 of Contemporary Mathematics. Providence, RI: American Mathematical Society.
  • Béthuel, F., Gravejat, P., Saut, J.-C. (2008). Existence and properties of travelling waves for the Gross-Pitaevski equation. In: Stationary and Time Dependent Gross-Pitaevskii Equations. Wolfgang Pauli Institute 2006 Thematic Program, January–December, 2006, Vienna, Austria, pp. 55–103. Providence, RI: American Mathematical Society (AMS).
  • Béthuel, F., Gravejat, P., Saut, J.-C. (2009). Travelling waves for the Gross-Pitaevskii equation. II. Commun. Math. Phys. 285(2):567–651. DOI: 10.1007/s00220-008-0614-2.
  • Chiron, D. (2012). Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one. Nonlinearity 25(3):813–850. DOI: 10.1088/0951-7715/25/3/813.
  • Chiron, D., Mariş, M. (2017). Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. Arch. Ration. Mech. Anal. 226(1):143–242. DOI: 10.1007/s00205-017-1131-2.
  • Mariş, M. (2008). Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. SIAM J. Math. Anal. 40(3):1076–1103. DOI: 10.1137/070711189.
  • Mariş, M. (2013). Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. Ann. Math. (2) 178(1):107–182. DOI: 10.4007/annals.2013.178.1.2.
  • Farina, A. (2003). From Ginzburg-Landau to Gross-Pitaevskii. Monatsh. Math. 139(4):265–269. DOI: 10.1007/s00605-002-0514-z.
  • Farina, A. (1998). Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in RK. Differ. Integral Equ. 11(6):875–893.
  • Ginibre, J., Velo, G. (1985). The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(4):309–327. DOI: 10.1016/s0294-1449(16)30399-7.
  • Cazenave, T. (2003). Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics. New York: New York University, Courant Institute of Mathematical Sciences; Providence, RI: American Mathematical Society.
  • Carles, R., Ferriere, G. (2021). Logarithmic Schrödinger equation with quadratic potential. Nonlinearity 34(12):8283–8310. DOI: 10.1088/1361-6544/ac3144.
  • Gérard, P., Zhang, Z. (2009). Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation. J. Math. Pures Appl. (9) 91(2):178–210. DOI: 10.1016/j.matpur.2008.09.009.
  • Lin, Z. (2002). Stability and instability of traveling solitonic bubbles. Adv. Differ. Equ. 7(8):897–918.
  • Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D. (2008). Orbital stability of the black soliton for the Gross-Pitaevskii equation. Indiana Univ. Math. J. 57(6):2611–2642. DOI: 10.1512/iumj.2008.57.3632.
  • Béthuel, F., Gravejat, P., Smets, D. (2015). Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation. Ann. Sci. Éc. Norm. Supér. (4) 48(6):1327–1381. DOI: 10.24033/asens.2271.
  • Gravejat, P., Smets, D. (2015). Asymptotic stability of the black soliton for the Gross-Pitaevskii equation. Proc. Lond. Math. Soc. (3) 111(2):305–353. DOI: 10.1112/plms/pdv025.
  • Gustafson, S., Nakanishi, K., Tsai, T.-P. (2006). Scattering for the Gross-Pitaevskii equation. Math. Res. Lett. 13(2-3):273–285. DOI: 10.4310/MRL.2006.v13.n2.a8.
  • Gustafson, S., Nakanishi, K., Tsai, T.-P. (2007). Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré 8(7):1303–1331. DOI: 10.1007/s00023-007-0336-6.
  • Gustafson, S., Nakanishi, K., Tsai, T.-P. (2009). Scattering theory for the Gross-Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11(4):657–707. DOI: 10.1142/S0219199709003491.
  • Killip, R., Murphy, J., Visan, M. (2018). The initial-value problem for the cubic-quintic NLS with nonvanishing boundary conditions. SIAM J. Math. Anal. 50(3):2681–2739. DOI: 10.1137/17M1116702.
  • Ferriere, G. (2021). Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38(3):841–875. DOI: 10.1016/j.anihpc.2020.09.002.
  • Pelinovsky, D. E. (2017). On the linearized log-KdV equation. Commun. Math. Sci. 15(3):863–880. DOI: 10.4310/CMS.2017.v15.n3.a13.
  • Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D. (2009). On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation. I. Int. Math. Res. Not. 14:2700–2748.
  • Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D. (2010). On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II. Commun. Partial Differ. Equ. 35(1):113–164. DOI: 10.1080/03605300903222542.
  • Chiron, D., Rousset, F. (2010). The KdV/KP-I limit of the nonlinear Schrödinger equation. SIAM J. Math. Anal. 42(1):64–96. DOI: 10.1137/080738994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.