433
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The Willmore flow with prescribed isoperimetric ratio

ORCID Icon
Pages 148-184 | Received 03 Mar 2023, Accepted 03 Jan 2024, Published online: 17 Jan 2024

References

  • Canham, P. (1970). The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1):61–81. DOI: 10.1016/s0022-5193(70)80032-7.
  • Helfrich, W. (1973). Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung C 28(11):693–703. DOI: 10.1515/znc-1973-11-1209.
  • Hawking, S. W. (1968). Gravitational radiation in an expanding universe. J. Math. Phys. 9(4):598–604. DOI: 10.1063/1.1664615.
  • Friesecke, G., James, R. D., Müller, S. (2002). A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11):1461–1506. DOI: 10.1002/cpa.10048.
  • Droske, M., Rumpf, M. (2004). A level set formulation for Willmore flow. Interfaces Free Bound. 6(3):361–378. DOI: 10.4171/IFB/105.
  • Willmore, T. J. (1993). Riemannian Geometry. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press.
  • Schygulla, J. (2012). Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203(3):901–941. DOI: 10.1007/s00205-011-0465-4.
  • Keller, L. G. A., Mondino, A., Rivière, T. (2014). Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint. Arch. Ration. Mech. Anal. 212(2):645–682. DOI: 10.1007/s00205-013-0694-9.
  • Mondino, A., Scharrer, C. (2021). A strict inequality for the minimization of the Willmore functional under isoperimetric constraint. Adv. Calc. Var. 16(3):529–540. DOI: 10.1515/acv-2021-0002.
  • Scharrer, C. (2022). Embedded Delaunay tori and their Willmore energy. Nonlinear Anal., 223:Paper No. 113010, 23. DOI: 10.1016/j.na.2022.113010.
  • Kusner, R., McGrath, P. (2023). On the Canham problem: bending energy minimizers for any genus and isoperimetric ratio. Arch. Ration. Mech. Anal. 247(1):Paper No. 10, 14.
  • Li, P., Yau, S. T. (1982). A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2):269–291.
  • McCoy, J., Wheeler, G. (2013). A classification theorem for Helfrich surfaces. Math. Ann. 357(4):1485–1508. DOI: 10.1007/s00208-013-0944-z.
  • Kuwert, E., Schätzle, R. (2002). Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2):307–339. DOI: 10.4310/CAG.2002.v10.n2.a4.
  • Kuwert, E., Schätzle, R. (2001). The Willmore flow with small initial energy. J. Differ. Geom. 57(3):409–441.
  • Kuwert, E., Schätzle, R. (2004). Removability of point singularities of Willmore surfaces. Ann. Math. (2) 160(1):315–357. DOI: 10.4007/annals.2004.160.315.
  • McCoy, J., Wheeler, G., Williams, G. (2011). Lifespan theorem for constrained surface diffusion flows. Math. Z. 269(1–2):147–178. DOI: 10.1007/s00209-010-0720-7.
  • Wheeler, G. (2012). Surface diffusion flow near spheres. Calc. Var. Partial Differ. Equ. 44(1–2):131–151. DOI: 10.1007/s00526-011-0429-4.
  • Dall’Acqua, A., Müller, M., Schätzle, R., Spener, A. The Willmore flow of tori of revolution, 2020. arXiv:2005.13500. To appear in Anal. PDE.
  • McCoy, J., Wheeler, G. (2016). Finite time singularities for the locally constrained Willmore flow of surfaces. Commun. Anal. Geom. 24(4):843–886. DOI: 10.4310/CAG.2016.v24.n4.a7.
  • Blatt, S. (2019). A note on singularities in finite time for the L2 gradient flow of the Helfrich functional. J. Evol. Equ. 19(2):463–477. DOI: 10.1007/s00028-019-00483-y.
  • Jachan, F. (2014). Area preserving Willmore flow in asymptotically Schwarzschild manifolds. PhD thesis, FU Berlin.
  • Rupp, F. (2023). The volume-preserving Willmore flow. Nonlinear Anal. 230:Paper No. 113220, 30. DOI: 10.1016/j.na.2023.113220.
  • Huisken, G. (1987). The volume preserving mean curvature flow. J. Reine Angew. Math. 382:35–48.
  • Blatt, S. (2009). A singular example for the Willmore flow. Analysis (Munich) 29(4):407–430. DOI: 10.1524/anly.2009.1017.
  • Chill, R., Fašangová, E., Schätzle, R. (2009). Willmore blowups are never compact. Duke Math. J. 147(2):345–376. DOI: 10.1215/00127094-2009-014.
  • Rupp, F. (2020). On the Łojasiewicz–Simon gradient inequality on submanifolds. J. Funct. Anal. 279(8):108708. DOI: 10.1016/j.jfa.2020.108708.
  • Bryant, R. L. (1984). A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1):23–53.
  • Kuwert, E., Schätzle, R. (2012). The Willmore functional. In: Topics in Modern Regularity Theory, volume 13 of CRM Series. Pisa: Ed. Norm., 1–115.
  • Hopf, H. (1983). Differential Geometry in the Large, volume 1000 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.
  • Aleksandrov, A. D. (1962). Uniqueness theorems for surfaces in the large. V. Amer. Math. Soc. Transl. (2) 21:412–416.
  • Rupp, F. (2022). Constrained gradient flows for Willmore-type functionals. PhD thesis, Universität Ulm.
  • Lee, J. M. (2013). Introduction to Smooth Manifolds, 2nd ed., volume 218 of Graduate Texts in Mathematics. New York: Springer.
  • Simon, L. (1993). Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2):281–326. DOI: 10.4310/CAG.1993.v1.n2.a4.
  • Marques, F. C., Neves, A. (2014). Min-max theory and the Willmore conjecture. Ann. Math. (2) 179(2):683–782. DOI: 10.4007/annals.2014.179.2.6.
  • Łojasiewicz, S. (1963). Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations aux Dérivées Partielles (Paris). Paris: Éditions du Centre National de la Recherche Scientifique, 87–89.
  • Łojasiewicz, S. (1965). Sur les ensembles semi-analytiques. I.H.E.S., Bures-sur-Yvette.
  • Simon, L. (1983). Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. (2) 118(3):525–571. DOI: 10.2307/2006981.
  • Aubin, T. (1982). Nonlinear Analysis on Manifolds. Monge–Ampère Equations, volume 252 of Grundlehren der Mathematischen Wissenschaften. New York: Springer-Verlag.
  • Lengeler, D. (2018). Asymptotic stability of local Helfrich minimizers. Interfaces Free Bound. 20(4):533–550. DOI: 10.4171/IFB/411.
  • Zwillinger, D. (2012). CRC Standard Mathematical Tables and Formulae, 32nd ed. Boca Raton, FL: CRC Press.
  • Kühnel, W. (2002). Differential Geometry, volume 16 of Student Mathematical Library. Providence, RI: American Mathematical Society. Curves—surfaces—manifolds, Translated from the 1999 German original by Bruce Hunt.
  • Cohn, P. M. (2003). Basic Algebra. Groups, Rings and Fields. London: Springer-Verlag.
  • Simons, J. (1968). Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88:62–105. DOI: 10.2307/1970556.