266
Views
8
CrossRef citations to date
0
Altmetric
Power electronics

Performance Comparison of Optimization Algorithm Tuned PID Controllers in Positive Output Re-Lift Luo Converter Operation for Electric Vehicle Applications

, ORCID Icon &

References

  • B. Mallikarjuna Reddy, and P. Samuel, “Analysis, modelling and implementation of multi-phase single-leg DC/DC converter for fuel cell hybrid electric vehicles,” Int. J. Model. Simul., Vol. 4, no. 4, pp. 279–90, 2020. doi:10.1080/02286203.2019.1610689.
  • S. Devi Vidhya, and M. Balaji, “Hybrid fuzzy PI controlled multi-input DC/DC converter for electric vehicle application,” Automatika, Vol. 61, no. 1, pp. 79–91, 2020. doi:10.1080/00051144.2019.1684038.
  • P. Prem, P. Sivaraman, J. S. Sakthi Suriya Raj, M. Jagabar Sathik, and D. Almakhles, “Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station,” Automatika, Vol. 61, no. 4, pp. 614–25, 2020. doi:10.1080/00051144.2020.1810506.
  • A. Mulla, and H. T. Jadhav, “Optimal scheduling of vehicle-to-Grid power exchange using particle swarm optimization technique,” Int. J. Comput. Appl. 2021. doi:10.1080/1206212X.2021.1903707.
  • K. S. Kavin, and P. Subha Karuvelam, “PV-based grid interactive PMBLDC electric vehicle with high gain interleaved DC-DC SEPIC converter,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1958070.
  • S. E. Hosseini, and B. Butler, “An overview of development and challenges in hydrogen powered vehicles,” Int. J. Green Energy, Vol. 17, no. 1, pp. 1337, 2020. doi:10.1080/15435075.2019.1685999.
  • B. G. Pollet, S. S. Kocha, and I. Staffell, “Current status of automotive fuel cells for sustainable transport,” Curr. Opin. Electro Chem., Vol. 16, no. 1, pp. 90–5, 2019. doi:10.1016/j.coelec.2019.04.021.
  • T. Teng, X. Zhang, H. Dong, and Q. Xue, “A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle,” Int. J. Hydrogen Energy, Vol. 45, no. 39, pp. 20293–303, 2020. doi:10.1016/j.ijhydene.2019.12.202.
  • X. Lü, Y. Wu, J. Lian, Y. Zhang, C. Chen, P. Wang, and L. Meng, “Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm,” Energy Convers. Manage., Vol. 205, no. 1, 2020. doi:10.1016/j.enconman.2020.112474.
  • G. Dotelli, R. Ferrero, P. Gallo Stampino, S. Latorrata, and S. Toscani, “Supercapacitor sizing for fast power dips in a hybrid supercapacitor – PEM fuel cell system,” IEEE Trans. Instrum. Meas., Vol. 65, no. 10, pp. 2196–203, Oct. 2016. doi:10.1109/TIM.2016.2549658.
  • W. B. Zhang, J. Q. Li, and L. F. Xu, “Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy,” Energy Convers. Manag., Vol. 134, no. 1, pp. 59–69, 2017. doi:10.1016/j.enconman.2016.11.007.
  • Z. N. Fu, Z. H. Li, P. J. Si, and F. Z. Tao, “A hierarchical energy management strategy for fuel cell/battery/super capacitor hybrid electric vehicles,” Int. J. Hydrogen Energy, Vol. 44, no. 1, pp. 22159–416, 2019. doi:10.1016/j.ijhydene.2019.06.158.
  • S. Ahmadi, S. M. T. Bathaee, and A. H. Hosseinpour, “Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy,” Energy Convers. Manag., Vol. 160, no. 1, pp. 74–84, 2018. doi:10.1016/j.enconman.2018.01.020.
  • C. E. Thomas, “Fuel cell and battery electric vehicles compared,” Int. J. Hydrogen Energy, Vol. 34, no. 1, pp. 6005–20, 2009. doi:10.1016/j.ijhydene.2009.06.003.
  • Q. Xun, Y. Liu, and N. Zhao. “Energy efficiency comparison of hybrid powertrain systems for fuel-cell-based electric vehicles,” in 2020 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 1234–9, 2020. doi:10.1109/ITEC48692.2020.9161586
  • W. Cai, X. Wu, M. Zhou, et al., “Review and development of electric motor systems and electric powertrains for new energy vehicles,” Automot. Innov., Vol. 4, no. 1, pp. 3–22, 2021. doi:10.1007/s42154-021-00139-z.
  • E. M. Barhoumi, S. Farhani, and F. Bacha, “High efficiency power electronic converter for fuel cell system application,” Ain Shams Eng. J., Vol. 12, no. 3, pp. 2655–64, 2021. doi:10.1016/j.asej.2021.01.010.
  • S. Chakraborty, H.-N. Vu, M. M. Hasan, D.-D. Tran, M. E. Baghdadi, and O. Hegazy, “DC–DC converter topologies for electric vehicles, plug-in hybrid electric vehicles and fast charging stations: state of the art and future trends,” Energies, Vol. 12, no. 8, pp. 1569–2019. doi:10.3390/en12081569.
  • S. Chauhan. “Emerging trends in wide band gap semiconductors (SiC and GaN) technology for automotive and energy saving applications”, 2021. https://www.eletimes.com/author/sheeba.
  • A. Ghosh, and S. S. Saran. “High gain DC-DC step-up converter with multilevel output voltage,” 2018 International Symposium on Devices, Circuits and Systems, Howrah, India, 2018, pp. 1–6. doi:10.1109/ISDCS.2018.8379657
  • F. Li, and H. Liu, “A cascaded coupled inductor-reverse high step-up converter integrating three-winding coupled inductor and diode–capacitor technique,” IEEE Trans. Ind. Inf., Vol. 13, no. 3, pp. 1121–30, 2017. doi:10.1109/TII.2016.2637371.
  • F. A. A. Meinagh, E. Babaei, H. Tarzamni, et al., “Isolated high step-up switched-boost DC/DC converter with modified control method,” IET Power Electron., Vol. 12, no. 14, pp. 3635–45, 2019. doi:10.1049/iet-pel.2018.6114.
  • A. Janabi, and B. Wang, “Switched-capacitor voltage boost converter for electric and hybrid electric vehicle drives,” IEEE Trans. Power Electron., 1–1, 2019. doi:10.1109/TPEL.2019.2949574.
  • M. A. Salvador, T. B. Lazzarin, and R. F. Coelho, “High step-up DC–DC converter with active switched- inductor and passive switched capacitor networks,” IEEE Trans. Ind. Electron., Vol. 65, no. 1, pp. 5644–54, 2018. doi:10.1109/TIE.2017.2782239.
  • M. Frivaldsky, J. Morgos, B. Hanko, and M. Prazenica, “The study of the operational characteristic of interleaved boost converter with modified coupled inductor,” Electronics, Vol. 8, no. 1, pp. 1049, 2019. doi:10.3390/electronics8091049.
  • T. Zeng, Z. Wu, and L. He, “An interleaved soft switching high step-up converter with low input current ripple and high efficiency,” IEEE Access, Vol. 7, no. 1, pp. 93580–93, 2019. doi:10.1109/ACCESS.2019.2928227.
  • A. Amira, A. Amira, H. SengChe, A. Elkhateb, and N. Abd Rahim, “Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems,” Renew. Energy, Vol. 136, no. 1, pp. 1147–63, 2019. doi:10.1016/j.renene.2018.09.089.
  • B. Wang, C. Wang, Q. Hu, G. Ma, and J. Zhou, “Adaptive sliding mode control with enhanced optimal reaching law for boost converter based hybrid power sources in electric vehicles,” J. Power Electron., Vol. 19, no. 2, pp. 549–59, 2019. doi:10.6113/JPE.2019.19.2.549.
  • K. Hemasuk, and S. Po-Ngam. “The simplified regenerative boost converter for electric vehicle applications,” 2017 International Electrical Engineering Congress, 2017, pp. 1–4. doi:10.1109/IEECON.2017.8075893
  • K. Kanthi Mathew, and D. M. Abraham, “Particle swarm optimization based sliding mode controllers for electric vehicle on-board charger,” Comput. Electr. Eng., Vol. 96, no. 1, pp. 1–9, 2021. doi:10.1016/j.compeleceng.2021.107502.
  • D. Thangavelusamy, and M. Thirumeni, “Design and analysis of hybrid PSO–GSA tuned PI and SMC controller for DC–DC Cuk converter,” IET Circ. Devices Syst., Vol. 13, no. 3, pp. 374–84, 2019. doi:10.1049/iet-cds.2018.5164.
  • M. ALMa’aitah, M. Abuashour, M. Alhattab, A. Omar, and T. Sweidan, “Optimization of PID controller employing PSO algorithm for interleaved buck boost power electronic converter,” Int. J. Ind. Electron. Drives, Vol. 5, no. 1, pp. 49–55, 2019. doi:10.1504/IJIED.2019.10023998.
  • K. Sayed, K. Nishida, H. A. Gabbar, and M. Nakaoka. “A new circuit topology for battery charger from 200V DC source to 12V for hybrid automotive applications,” 2016 IEEE Smart Energy Grid Engineering (SEGE), 2016, pp. 317–21. doi:10.1109/SEGE.2016.7589544
  • F. L. Luo, “Relift converter-design, test, simulation and test analysis,” IEEE Proc. Electr. Power Appl., Vol. 45, no. 4, July 1995. doi:10.1049/ip-epa:19981804.
  • F. L. Luo, “Positive output Luo converters: voltage lift technique,” IEEE Proc. Electr. Power Appl., Vol. 146, no. 4, July 1999. doi:10.1049/IP-EPA:19990291.
  • F. L. Luo. “Luo-converters, voltage lift technique.” Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE. Vol. 2. IEEE, 1998. doi:10.1109/PESC.1998.703423
  • N. Silpa, and J. Chitra, “An improved Luo converter for high voltage applications,” Int. J. Emerg. Technol. Adv. Eng., Vol. 4, no. 5, pp. 262–7, 2014.
  • R. M. Schupbach, and J. C. Balda. “Comparing DC-DC converters for power management in hybrid electric vehicles,” IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03., Madison, WI, USA, vol. 3, no. 1, 2003, pp. 1369–74. doi:10.1109/IEMDC.2003.1210630
  • S. Lakshmi, and S. R. Raja, “Closed loop control of soft switched interleaved buck converter,” International Journal of Power Electronics and Drive System (IJPEDS), Vol. 2, no. 3, pp. 313–24, September 2012. doi:10.11591/ijpeds.v2i3.832.
  • P. Comines, and N. Munro, “PID controllers: Recent tuning methods and design to specification,” IEEE Proc. Contr. Theory Appl., Vol. 149, no. 1, pp. 46–53, Jan. 2002. doi:10.1049/ip-cta:20020103.
  • S. Banerjee, and N. Rana, “Closed-loop control and performance analysis of a high-gain buck-boost converter with optimized type III controller,” Int. Trans. Electr Energ Syst, Vol. 30, no. 2, pp. 1–19, 2019. doi:10.1002/2050-7038.12158.
  • I. Griffin. On-line PID controller tuning using genetic algorithms. Dublin, Ireland: Dublin City University, 2003.
  • C. Komathi, and U. M. Gopinath, “Analysis and design of genetic algorithm-based cascade control strategy for improving the dynamic performance of interleaved DC–DC SEPIC PFC converter,” Neural Comput. Appl., Vol. 32, pp. 5033–47, 2018. doi:10.1007/s00521-018-3944-9.
  • Y. Li, and Z. C. Duan, “Optimization for parameter of PID based on PSO,” Mach. Electron., Vol. 1, no. 9, pp. 26–8, 2004. doi:10.1109/ICAL.2007.4338724.
  • R. Femi, T. Sree Renga Raja, and R. Shenbagalakshmi, “A positive output-super lift Luo converter fed brushless DC motor drive using alternative energy sources,” Int. Trans. Electr. Energ. Syst., Vol. 31, no. 2, pp. 1–23, 2020. doi:10.1002/2050-7038.12740.
  • E. Kose, and A. Muhurcu, “” The control of a non-linear chaotic system using genetic and particle swarm based on optimization algorithms,” Int. J. Intell. Syst. Appl. Eng, Vol. 4, no. 4, pp. 145–9, 2016. doi:10.18201/ijisae.2016426386.
  • R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization – An overview,” Swarm Intell., Vol. 1, pp. 33–57, 2007. doi:10.1007/s11721-007-0002-0.
  • W. Cai, L. Jia, Y. Zhang, and N. Ni. “Design and simulation of intelligent PID controller based on particle swarm optimization,” 2010 International Conference on E-Product E-Service and E-Entertainment, 2010, pp. 1–4. doi:10.1109/ICEEE.2010.5661241
  • N. Kundariya, and J. Ohri, “Design of intelligent PID controller using particle swarm,” Int. J. Sci. Eng. Res., Vol. 4, no. 7, July 2013. doi:10.1109/ICEEE.2010.5661241.
  • Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Trans. Energy Convers., Vol. 19, no. 2, pp. 384–91, 2004. doi:10.1109/TEC.2003.821821.
  • S. Abdelmalek, A. Dali, M. Bettayeb, et al., “A new effective robust nonlinear controller based on PSO for interleaved DC–DC boost converters for fuel cell voltage regulation,” Soft. Comput., Vol. 24, no. 1, pp. 17051–64, 2020. doi:10.1007/s00500-020-04996-4.
  • M. Al Sakka, J. Van Mierlo, and H. Gualous. “DC/DC converters for electric vehicles”. www.intechopen.com.
  • J. S. V. Siva Kumar, and P. Venkata sateesh, “Design and simulation of dc-dc converter with high voltage gain for fuel cell based vehicles,” Int. J. Mech. Eng. Technol., Vol. 8, no. 8, pp. 565–74, 2017. doi:10.1109/ICPCSI.2017.8392338.
  • M. N. Alama. “Particle swarm optimization: algorithm and its codes in MATLAB”, Department of Electrical Engineering, Indian Institute of Technology, Roorkee-247667, India, March 2016. doi:10.13140/RG.2.1.4985.3206.
  • P. Modulation, M. Marsadek, N. A. Rahmat, Y. Hoon, and A. Aljanad, “A three-level universal electric vehicle charger based on voltage-oriented control and pulse-width modulation,” Energies, Vol. 12, no. 1, pp. 2375, 2019.
  • H. Yin, W. Zhou, M. Li, C. Ma, and C. Zhao, “An adaptive fuzzy logic based energy management strategy on battery/ultracapacitor hybrid electric vehicles,” IEEE Trans. Transp. Electrif., Vol. 2, no. 3, pp. 1–1, 2016. doi:10.1109/TTE.2016.2552721.
  • U. Yilmaz, O. Turksoy, and A. Teke, “Intelligent control of high energy efficient two-stage battery charger topology for electric vehicles,” Energy, Vol. 186, no. 1, pp. 115825, 2019. doi:10.1016/j.energy.2019.07.155.
  • J. Wang, D. Xu, H. Zhou, and T. Zhou, “Adaptive fractional order sliding mode control for boost converter in the battery/supercapacitor HESS,” PLoS One, Vol. 13, no. 4, pp. 1–9, 2018. doi:10.1371/journal.pone.0196501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.