129
Views
0
CrossRef citations to date
0
Altmetric
Electronic circuits devices and components

1 V, 20 nW True RMS to DC Converter based on Third Order Dynamic Translinear Loop

, &

References

  • P. L. Richman, “A new wideband true rms-to-dc converter,” IEEE Trans. Instrum. Meas., Vol. 16, no. 2, pp. 129–134, 1967.
  • S. A. P. Haddad, S. Gieltjes, R. Houben, and W. A. Serdijn, “An ultra low-power dynamic translinear cardiac sense amplifier for pacemakers,” Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03., Vol. 5, pp. V, 2003.
  • M. Zidi, A. Asfour, and J.-P. Yonnet, “RMS-to-DC converter for GMI magnetic sensor,” IEEE Trans. Magn., Vol. 51, no. 1, pp. 1–4, 2015.
  • J. Mulder, W. A. Serdijn, A. C. Van der Woerd, and A. H. M. Van Roermund, “Dynamic translinear RMS-DC converter,” Electron. Lett., Vol. 32, no. 22, pp. 2067–2068, 1996.
  • J. Mulder, A. C. Van der Woerd, W. A. Serdijn, and A. H. M. Van Roermund, “An RMS-DC converter based on the dynamic translinear principle,” IEEE J. Solid-State Circuits, Vol. 32, no. 7, pp. 1146–1150, 1997.
  • V. Surakampontorn, and K. Kumwachara, “A dual translinear-based true RMS-to-DC converter,” IEEE Trans. Instrum. Meas., Vol. 47, no. 2, pp. 459–464, 1998.
  • A. J. López-Martín, and A. Carlosena, “A 1.5 V current-mode CMOS RMS-to-DC converter,” Analog Integr. Circuits Signal Process., Vol. 36, no. 1, pp. 137–143, 2003.
  • H. Asiaban, and E. Farshidi, “A new true RMS-to-DC converter in CMOS technology,” World Acad. Sci. Eng. Technol., Vol. 71, pp. 267–270, 2010.
  • C. A. De la Cruz-Blas, A. López-Martin, A. Carlosena, and J. Ramirez-Angulo, “1.5-V current-mode CMOS true RMS-DC converter based on class-AB transconductors,” IEEE Trans. Circuits Syst. II Express Briefs, Vol. 52, no. 7, pp. 376–379, 2005.
  • E. Farshidi, and S. M. Sayedi, “A micropower multi decade dynamic range current-mode true RMS-to-DC converter,” 2007 IEEE Northeast Workshop on Circuits and Systems, 1493–1496, 2007.
  • E. Farshidi, and T. Ghanavati Nejad, “A new two-quadrant squarer/divider circuit for true RMS-to-DC converters in MOS technology,” Measurement. (. Mahwah. N. J), Vol. 45, no. 4, pp. 778–784, 2012.
  • E. Rodriguez-Villegas, and H. Barnes, “Solution to trapped charge in FGMOS transistors,” Electron. Lett., Vol. 39, no. 19, pp. 1416–1417, 2003.
  • R. G. Talkhouncheh, S. A. Khoshnevis, F. Shahabi, and S. Ghorshi, “4µW RMS-to-DC converter in 180 nm technology process for biomedical applications,” J. Soft Comput. Decis. Support Syst., Vol. 6, no. 5, pp. 9–14, 2019.
  • M. Martincorena-Arraiza, C. A. De La Cruz Blas, J. M. Algueta-Miguel, and A. Lopez-Martin, “A 1.2-V current-mode RMS-to-DC converter based on a novel Two-quadrant electronically simulated MOS translinear loop,” IEEE Trans. Circuits Syst. II Express Briefs, Vol. 67, no. 3, pp. 420–424, 2020.
  • P. Kompitaya, and K. Kaewdang, “A low-voltage low-power CMOS weak inversion true RMS-to-DC converter,” The 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand-Conference 2011, 94–97, 2011.
  • M. Shaterian, C. M. Twigg, and J. Azhari, “MTL-based implementation of current-mode CMOS RMS-to-DC converters,” Int. J. Circuit Theory Appl., Vol. 43, no. 6, pp. 793–805, 2015.
  • M. H. Danesh, S. Nikseresht, and M. Dehdast, “A current-mode RMS-to-DC converter based on translinear principle,” Int. J. Electr. Electron. Eng.(IJEEE), Vol. 3, no. 1, pp. 90–93, 2013.
  • M. H. Danesh, E. Mahmoudian, and A. E. Fard, “A new current-mode squarer circuit for RMS-to-DC converter,” Int. J. Eng. Innov. Technol., Vol. 3, no. 2, pp. 1–4, 2013.
  • S. Minaei, and C. Psychalinos, “Two-quadrant fully integrable RMS-to-DC converter for handling low-frequency signals,” AEU-International J. Electron. Commun., Vol. 69, no. 12, pp. 1897–1901, 2015.
  • M. M. Maryan, and S. J. Azhari, “CMOS design of computational current-mode static and dynamic functions based on analog translinear cell,” Comput. Electr. Eng., Vol. 68, pp. 629–645, 2018.
  • M. M. Maryan, S. J. Azhari, A. Ayatollahi, and H. Sajadinia, “0.8-V 1.4-nW multi-decade frequency range true RMS to DC converter based on two-quadrant current squarer circuit,” IET Sci. Meas. Technol., Vol. 14, no. 1, pp. 17–25, 2020.
  • J. Mulder, W. A. Serdijn, A. C. Van Der Woerd, and A. H. M. Van Roermund, “Dynamic translinear circuits—An overview,” in Res. Perspect. Dyn. Translinear log-Domain Circuits, 2000, pp. 5–20.
  • C.-C. Chang, and S.-I. Liu, “Current-mode full-wave rectifier and vector summation circuit,” Electron. Lett., Vol. 36, no. 19, pp. 1599–1600, 2000.
  • G. H. Rao, and S. Rekha, “Time constant enhancement technique for low-frequency filters,” Circuits, Syst. Signal Process., Vol. 39, no. 3, pp. 1213–1226, 2020.
  • E. Farshidi, and S. M. Sayedi, “A 1.2V current-mode true RMS–DC converter based on the floating gate MOS translinear principle,” Microelectronics J., Vol. 39, no. 2, pp. 293–298, 2008.
  • E. Farshidi, and H. Asiaban, “A new true RMS-to-DC converter using up-down translinear loop in CMOS technology,” Analog Integr. Circuits Signal Process., Vol. 70, no. 3, pp. 385–390, 2012.
  • C. Sawigun, and S. Thanapitak, “A compact Sub-μW CMOS ECG amplifier with 57.5-MΩ Z in, 2.02 NEF, 8.16 PEF and 83.24-dB CMRR,” IEEE Trans. Biomed. Circuits Syst., Vol. 15, no. 3, pp. 549–558, 2021.
  • S. Thanapithak, and C. Sawigun, “A 1.5 V 5.2 nW 60 dB-DR lowpass filter with self-compansated gain in 0.35 μm CMOS suitable for biomedical applications,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1–4, 2018.
  • A. Patil, M. Muhammed, H. G. Rao, and S. Rekha, “Low power log-domain filter,” in 2019 IEEE 16th India Council International Conference (INDICON), 2019, pp. 1–4.
  • A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, et al., “Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation, Vol. 101, no. 23, pp. e215–e220, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.