117
Views
7
CrossRef citations to date
0
Altmetric
Control engineering

Coordinated Wide-Area Damping Control in Modern Power Systems Embedded with Utility-Scale Wind-Solar Plants

, &

REFERENCES

  • IEA (2021). Renewables Integration in India, pp. 1-98, IEA, Paris, Available: https://www.iea.org/reports/renewables-integration-in-india.
  • D. Palchak, I. Chernyakhovskiy, T. Bowen, and V. Narwade. India 2030 Wind and Solar Integration Study: Interim Report, pp. 1-29, 2019. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-73854. https://www.nrel.gov/docs/fy19osti/73854.pdf.
  • B. Liu, J. Zhao, Q. Huang, F. Milano, Y. Zhang, and W. Hu, “Nonlinear virtual inertia control of WTGs for enhancing primary frequency response and suppressing drivetrain torsional oscillations,” IEEE Trans. Power Syst., Vol. 36, no. 5, pp. 4102–4113, Sept. 2021.
  • B. Pal, and B. Chaudhuri. Robust Control in Power Systems. power electronics and Power Systems series. Boston, MA: Springer, 2005.
  • G. Rogers. Power system oscillations. The Springer International series in Engineering and computer science series. Boston, MA: Springer, 2000.
  • P. Kundur. “Power system stability and control,” Electric power research institute. New York, USA: McGraw- Hill, 1994.
  • M. Singh, and S. Santoso. “Dynamic Models for Wind Turbines and Wind Power Plants”, National Renewable Energy Laboratory, The University of Texas at Austin, XEE-8-77567-01, 2011. Available: https://www.nrel.gov/docs/fy12osti/52780.pdf.
  • S. Shah, and V. Gevorgian. “Control, Operation, and Stability Characteristics of Grid-Forming Type III Wind Turbines”, Preprint, Golden, CO: National Renewable Energy Laboratory, NREL/CP-5D00-78158, 2020.
  • WECC Solar Photovoltaic Power Plant Modeling and Validation Guideline MVWG December 9, 2019. Available: https://www.wecc.org/Reliability/Solar%20PV%20Plant%20Modeling%20and%20Validation%20Guidline.pdf.
  • X. Y. Bian, Y. Geng, K. L. Lo, Y. Fu, and Q. B. Zhou, “Coordination of PSSs and SVC damping controller to improve probabilistic Small-Signal stability of power system With wind farm integration,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 2371–2382, May 2016.
  • M. Darabian, “Seyed masoud mohseni-bonab & behnam mohammadi-ivatloo “improvement of power system stability by optimal SVC controller design using shuffled frog-leaping algorithm”,” IETE. J. Res., Vol. 61, no. 2, pp. 160–169, 2015.
  • L. Zacharia, L. Hadjidemetriou, and E. Kyriakides, “Integration of Renewables into the Wide Area Control scheme for damping power oscillations,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 5778–5786, Sept. 2018.
  • D. Ke, F. Shen, C. Y. Chung, C. Zhang, J. Xu, and Y. Sun, “Application of information Gap decision theory to the design of Robust wide-area Power System stabilizers considering uncertainties of wind power,” IEEE Trans. Sustain. Energy, Vol. 9, no. 2, pp. 805–817, 2018.
  • L. Simon, K. S. Swarup, and J. Ravishankar, “Wide area oscillation damping controller for DFIG using WAMS with delay compensation,” IET Renew. Power Gener., Vol. 13, pp. 128–137, 2019.
  • C. Liu, G. Cai, W. Ge, D. Yang, C. Liu, and Z. Sun, “Oscillation analysis and wide-area damping control of DFIGs for Renewable Energy power Systems using line modal potential Energy,” IEEE Trans. Power Syst., Vol. 33, no. 3, pp. 3460–3471, May 2018.
  • V. V. G. Krishnan, S. C. Srivastava, and S. Chakrabarti, “A Robust decentralized Wide Area damping controller for Wind Generators and FACTS controllers considering load model uncertainties,” IEEE Trans. Smart Grid, Vol. 9, no. 1, pp. 360–372, Jan. 2018.
  • M. Mokhtari, and F. Aminifar, “Toward wide-area oscillation control through doubly-Fed induction generator wind farms,” IEEE Trans. Power Syst., Vol. 29, no. 6, pp. 2985–2992, Nov. 2014.
  • T. Surinkaew, and I. Ngamroo, “Two-level coordinated controllers for robust inter-area oscillation damping considering impact of local latency,” IET Gener. Transm. Distrib, Vol. 11, pp. 4520–4530, 2018.
  • A. Thakallapelli, S. J. Hossain, and S. Kamalasadan, “Coherency and online signal selection based wide Area Control of Wind integrated power grid,” IEEE Trans. Ind. Appl., Vol. 54, no. 4, pp. 3712–3722, July-Aug. 2018.
  • R. Yousefian, R. Bhattarai, and S. Kamalasadan, “Transient stability Enhancement of power grid with integrated wide area control of wind farms and synchronous generators,” IEEE Trans. Power Syst., Vol. 32, no. 6, pp. 4818–4831, Nov. 2017.
  • C. Zhang, D. Ke, Y. Sun, C. Y. Chung, J. Xu, and F. Shen, “Coordinated supplementary damping control of DFIG and PSS to Suppress inter-area oscillations with optimally controlled plant dynamics,” IEEE Trans. Sustain. Energy, Vol. 9, no. 2, pp. 780–791, April 2018.
  • P. Gupta, A. Pal, and V. Vittal, “Coordinated wide-area control of multiple controllers in a Power System embedded With HVDC lines,” IEEE Trans. Power Syst., Vol. 36, no. 1, pp. 648–658, 2021.
  • R. K. Varma, and H. Maleki, “PV Solar System control as STATCOM (PV-STATCOM) for power oscillation damping,” IEEE Trans. Sustain. Energy, Vol. 10, no. 4, pp. 1793–1803, Oct. 2019.
  • R. K. Varma, and M. Akbari, “Simultaneous fast Frequency Control and power oscillation damping by utilizing PV Solar System as PV-STATCOM,” IEEE Trans. Sustain. Energy, Vol. 11, no. 1, pp. 415–425, Jan. 2020.
  • H. Silva-Saravia, H. Pulgar-Painemal, L. M. Tolbert, D. A. Schoenwald, and W. Ju, “Enabling utility-scale solar PV plants for electromechanical oscillation damping,” IEEE Trans. Sustain. Energy, Vol. 12, no. 1, pp. 138–147, Jan. 2021.
  • P. W. Sauer, M. A. Pai, and J. H. Chow. Power system dynamics and stability with Synchrophasor measurement and power system toolbox. 2nd Edition. New Delhi, India: Wiley-IEEE Press, 2017.
  • M. Patel, etc. Real-Time Application of Synchrophasors for Improving Reliability. Washington, DC, USA, 2010. Available: https://www.naspi.org/sites/default/files/reference_documents/rapir_final_20101017.pdf.
  • M. Bhadu, N. Senroy, I. Narayan Kar, and G. N. Sudha, “Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller,” IET. Gener. Transm. Distrib., Vol. 10, no. 6, pp. 1470–1478, 21 4 2016.
  • M. Bhadu, N. S. Tripathy, I. Narayan Kar, and N. Senroy, “Event-triggered communication in wide-area damping control: a limited output feedback-based approach,” IET. Gener. Transm. Distrib., Vol. 10, no. 16, pp. 4094–4104, 8 12 2016.
  • A. Darvish Falehi, “An optimal second-order sliding mode based inter-area oscillation suppressor using chaotic whale optimization algorithm for doubly fed induction generator,” Int. J. Numer. Model, Vol. 35, no. 2, pp. e2963, 2022. doi:10.1002/jnm.2963.
  • A. Darvish Falehi, “An innovative OANF–IPFC based on MOGWO to enhance participation of DFIG-based wind turbine in interconnected reconstructed power system,” Soft. comput., Vol. 23, pp. 12911–12927, 2019. doi:10.1007/s00500-019-03848-0.
  • A. Kumar, and M. Bhadu, “A comprehensive study of wide-area damping controller requirements through Real-Time evaluation with operational uncertainties in modern power systems,” IETE. J. Res. (2022. doi:10.1080/03772063.2022.2043784.
  • A. Darvish Falehi, “Optimal fractional order BELBIC to ameliorate small signal stability of interconnected hybrid power system,” Environ. Prog Sustainable Energy, Vol. 38, pp. 1–18, 2019. doi:10.1002/ep.13208.
  • IEEE PES Task Force on Benchmark Systems for Small-Signal Stability Analysis and Control. Technical Report PES-TR18, IEEE Power & Energy Society, Aug, 2015. Available: http://www1.sel.eesc.usp.br/ieee/.
  • Hydro-Québec. “Simscape Electrical, User's Guide (Specialized Power Systems)”, The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098.
  • Model User Guide for Generic Renewable Energy System Models. EPRI, Palo Alto, CA: 2018. 3002014083.
  • H. Shao, et al., “Stability Enhancement and Direct speed Control of DFIG inertia emulation control strategy,” IEEE Access, Vol. 7, pp. 120089–120105, 2019. doi:10.1109/ACCESS.2019.2937180.
  • X. Yingcheng, and T. Nengling, “System frequency regulation in doubly fed induction generators,” Int. J. Electr. Power Energy Syst., Vol. 43, no. 1, pp. 977–983, 2012.
  • V. Y. Singarao, and V. S. Rao, “Frequency responsive services by wind generation resources in United States,” Renewable Sustainable Energy Rev., Vol. 55, pp. 1097–1108, 2016.
  • P. E. Sørensen, A. D. Hansen, F. Iov, F. Blaabjerg, and M. H. Donovan. “Wind farm models and control strategies”, Denmark. Forskningscenter Risoe. Risoe-R No. 1464(EN), 2005.
  • R. G. de Almeida, and J. A. Pecas Lopes, “Participation of doubly Fed induction Wind Generators in system frequency regulation,” IEEE Trans. Power Syst., Vol. 22, no. 3, pp. 944–950, Aug. 2007.
  • K. Clark, N. W. Miller, and J. Sanchez-Gazca. “Modeling of GE wind turbine generators for grid studies,” GE Energy, Ver. 4.5, General Electric International, Inc., One River Road, Schenectady, NY, April 16, 2010.
  • G. Balas, R. Chiang, A. Packard, and M. Safonov. “Robust Control Toolbox”, The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098, 2021.
  • F. Milano, and M. Anghel, “Impact of time delays on Power System stability,” IEEE Trans. Circuits Syst. Regul. Pap., Vol. 59, no. 4, pp. 889–900, April 2012.
  • C. Zhang, L. Jiang, Q. H. Wu, Y. He, and M. Wu, “Further results on delay-dependent stability of multi-area load frequency control,” IEEE Trans. Power Syst., Vol. 28, no. 4, pp. 4465–4474, 2013.
  • W. Yao, C. Yan, X. Liu, C.-K. Zhang, L. Jiang, and J. Wen, “Coordinated design of delay-dependent wide-area damping controllers considering multiple time delays,” IET Gener. Transm. Distrib, Vol. 15, pp. 1996–2007, 2021.
  • M. E. C. Bento, “Fixed Low-order wide-area damping controller considering time delays and power system operation uncertainties,” IEEE Trans. Power Syst., Vol. 35, no. 5, pp. 3918–3926, 2020.
  • A. Yogarathinam, and N. R. Chaudhuri, “Wide-Area damping control using multiple DFIG-based wind farms under stochastic data packet dropouts,” IEEE Trans. Smart Grid, Vol. 9, no. 4, pp. 3383–3393, July 2018.
  • S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp swarm algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., Vol. 114, pp. 163–191, 2017.
  • I. Kamwa, R. Grondin, and G. Trudel, “IEEE PSS2B versus PSS4B: the limits of performance of modern power system stabilizers,” IEEE Trans. Power Syst., Vol. 20, no. 2, pp. 903–915, May 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.