61
Views
0
CrossRef citations to date
0
Altmetric
Medical electronics

Distance Metric-based Segmentation and Score-Level Classification for Optimized Tumor Identification in MR Images

, &

REFERENCES

  • F. Özyurt, E. Sert, E. Avci, and E. Dogantekin, “Brain tumor detection based on convolutional neural network with neutrosophic expert maximum fuzzy sure entropy,” Measurement, Vol. 147, pp. 106830, 2019.
  • P. Xiang, et al., “Pancreatic tumor in type 1 autoimmune pancreatitis: a diagnostic challenge,” BMC Cancer, Vol. 19, no. 1, pp. 1–12, 2019.
  • V. Janani, and P. Meena, “Image segmentation for tumor detection using fuzzy inference system,” Int. J. Comput. Sci. Mobile Comput., Vol. 2, no. 5, pp. 244–8, 2013.
  • J. Patel, and K. Doshi, “A study of segmentation methods for detection of tumor in brain MRI,” Adv. Electron. Electr. Eng., Vol. 4, no. 3, pp. 279–84, 2014.
  • H. A. Aslam, T. Ramashri, and M. I. A. Ahsan, “A new approach to image segmentation for brain tumor detection using pillar K-means algorithm,” Int. J. Adv. Res. Comput. Commun. Eng., Vol. 2, no. 3, pp. 1429–36, 2013.
  • D. Naik, and P. Shah, “A review on image segmentation clustering algorithms,” Int. J. Comput. Sci. Inform. Technol., Vol. 5, no. 3, pp. 3289–93, 2014.
  • X. Zhao, Y. Wu, C. Song, Z. Li, Y. Zhang, and Y. Fan, “A deep learning model integrating FCNNs and CRFs for brain tumor segmentation,” Med. Image Anal., Vol. 43, pp. 98–111, 2018.
  • A. Jose, S. Ravi, and M. Sambath, “Brain tumor segmentation using k-means clustering and fuzzy c-means algorithms and its area calculation,” Int. J. Innov. Res. Comput. Commun. Eng., Vol. 2, no. 2, pp. 3496–3501, 2014.
  • A. M. Ali, L. K. Abood, and R. S. Abdoon, “Brain tumor extraction in MRI images using clustering and morphological operations techniques,” Int. J. Geog. Inf. Syst. Appl. Remote Sens., Vol. 4, no. 1, pp. 12–25, 2013.
  • M. M. Ahmed, and D. B. Mohamad, “Segmentation of brain MR images for tumor extraction by combining kmeans clustering and perona-malik anisotropic diffusion model,” Int. J. Image Process., Vol. 2, no. 1, pp. 27–34, 2008.
  • K. Krishna, and M. N. Murty, “Genetic K-means algorithm,” IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), Vol. 29, no. 3, pp. 433–9, 1999.
  • V. Anitha, and S. J. I. C. V. Murugavalli, “Brain tumour classification using two-tier classifier with adaptive segmentation technique,” IET Comput. Vision, Vol. 10, no. 1, pp. 9–17, 2016.
  • T. Kaur, B. S. Saini, and S. Gupta, “Quantitative metric for MR brain tumour grade classification using sample space density measure of analytic intrinsic mode function representation,” IET Image Proc., Vol. 11, no. 8, pp. 620–32, 2017.
  • U. Perez, E. Arana, and D. Moratal, “Brain metastases detection algorithms in magnetic resonance imaging,” IEEE Latin Am. Trans., Vol. 14, no. 3, pp. 1109–14, 2016.
  • S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation using convolutional neural networks in MRI images,” IEEE Trans. Med. Imaging, Vol. 35, no. 5, pp. 1240–51, 2016.
  • J. Shah, S. Surve, and V. Turkar, “Pancreatic tumor detection using image processing,” Procedia. Comput. Sci., Vol. 49, pp. 11–16, 2015.
  • M. U. Sanoob, A. Madhu, K. Ajesh, and S. M. Varghese, “Artificial neural network for diagnosis of pancreatic cancer,” Int. J. Cybern. Informatics, Vol. 5, no. 2, pp. 40–9, 2016.
  • A. Farag, L. Lu, E. Turkbey, J. Liu, and R. M. Summers. “A bottom-up approach for automatic pancreas segmentation in abdominal CT scans,” in International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging, Springer, Cham, Sep. 2014, pp. 103–13.
  • A. R. Khan, S. Khan, M. Harouni, R. Abbasi, S. Iqbal, and Z. Mehmood, “Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification,” Microsc. Res. Tech., Vol. 84, no. 7, pp. 1389–99, 2021.
  • W. Deng, Q. Shi, M. Wang, B. Zheng, and N. Ning, “Deep learning-based HCNN and CRF-RRNN model for brain tumor segmentation,” IEEE Access, Vol. 8, pp. 26665–75, 2020.
  • L. Pei, S. Bakas, A. Vossough, C. Davatzikos, and K. M. Iftekharuddin, “Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion,” Biomed. Signal. Process. Control., Vol. 55, pp. 101648, 2020.
  • T. Zhou, S. Canu, P. Vera, and S. Ruan, “Latent correlation representation learning for brain tumor segmentation with missing MRI modalities,” IEEE Trans. Image Process., Vol. 30, pp. 4263–74, 2021.
  • T. Zhou, S. Canu, and S. Ruan, “Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation,” Comput. Med. Imaging Graph., Vol. 86, pp. 101811, 2020.
  • M. Akil, R. Saouli, and R. Kachouri, “Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted class-entropy,” Med. Image Anal., Vol. 63, pp. 101692, 2020.
  • J. Xue, et al., “Hypergraph membrane system based F2 fully convolutional neural network for brain tumor segmentation,” Appl. Soft. Comput., Vol. 94, pp. 106454, 2020.
  • V. S. Bhadouria, D. Ghoshal, and A. H. Siddiqi, “A new approach for high density saturated impulse noise removal using decision-based coupled window median filter,” Signal. Image Video. Process., Vol. 8, no. 1, pp. 71–84, 2014.
  • A. Roy, J. Singha, L. Manam, and R. H. Laskar, “Combination of adaptive vector median filter and weighted mean filter for removal of high-density impulse noise from colour images,” IET Image Process., Vol. 11, no. 6, pp. 352–61, 2017.
  • M. Maitra, and S. Chakraborty, “A novel decision-based adaptive feedback median filter for high density impulse noise suppression,” Multimed. Tools. Appl., Vol. 80, no. 1, pp. 299–321, 2021.
  • D. J. Hemanth, C. Vijila, A. I. Selvakumar, and J. Anitha, “Distance metric-based time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation,” Neural Comput. Appl., Vol. 22, no. 5, pp. 1013–22, 2013.
  • S. E. Ivanov, N. Gorlushkina, and A. Govorov, “The recognition and classification of objects based on the modified distance metric,” Procedia. Comput. Sci., Vol. 136, pp. 210–17, 2018.
  • C. Sheela, and G. J. M. T. Suganthi, “Morphological edge detection and brain tumor segmentation in Magnetic Resonance (MR) images based on region growing and performance evaluation of modified Fuzzy C-Means (FCM) algorithm,” Multimed. Tools. Appl., Vol. 79, no. 25, pp. 1748–96, 2020.
  • D. J. Reddy, T. Arun Prasath, M. Pallikonda Rajasekaran, and G. Vishnuvarthanan. “Brain and pancreatic tumor classification based on GLCM—k-NN approaches,” in International conference on intelligent computing and applications, Springer, Singapore, 2019, pp. 293–302.
  • F. Mohanty, S. Rup, B. Dash, B. Majhi, and M. N. S. Swamy, “Digital mammogram classification using 2D-BDWT and GLCM features with FOA-based feature selection approach,” Neural Comput. Appl., Vol. 32, no. 11, pp. 7029–43, 2020.
  • R. Rigamonti, M. A. Brown, and V. Lepetit. “Are sparse representations really relevant for image classification?” in CVPR 2011, IEEE, Jun. 2011, pp. 1545–52.
  • Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 34, no. 11, pp. 2233–46, 2012.
  • J. R. Dandu, A. P. Thiyagarajan, P. R. Murugan, and V. Govindaraj, “Brain and pancreatic tumor segmentation using SRM and BPNN classification,” Health. Technol., Vol. 10, no. 1, pp. 187–95, 2020.
  • L. Lu, C. Fang, Z. Hu, X. Hu, and Z. Zhu, “Grade classification model tandem BpNN method with multi-metal sensor for rice eating quality evaluation,” Sens. Actuators, B, Vol. 281, pp. 22–7, 2019.
  • B. Nassih, A. Amine, M. Ngadi, and N. Hmina, “DCT and HOG feature sets combined with BPNN for efficient face classification,” Procedia. Comput. Sci., Vol. 148, pp. 116–25, 2019.
  • R. K. Dubey, J. Goh, and V. L. Thing, “Fingerprint liveness detection from single image using low-level features and shape analysis,” IEEE Trans. Inf. Forensics Secur., Vol. 11, no. 7, pp. 1461–75, 2016.
  • D. J. Reddy, T. A. Prasath, and M. P. Rajasekaran, “Spotting brain and pancreatic tumor using fuzzy C-mean segmentation and SIFT extraction through sparse representation method,” Int. J. Recent Technol. Eng., Vol. 8, no. 4S2, pp. 325–30, 2019.
  • D. J. Reddy, T. A. Prasath, and M. P. Rajasekaran, “Spotting brain and pancreatic tumor identification through SRM segmentation and Naïve Bayes method,” Int. J. Recent Technol. Eng., Vol. 8, no. 4S2, pp. 339–43, 2019.
  • T. C. I. A. Darabase. Accessed Sep 28, 2020. [Online]. Available: https://wiki,cancerimagingarchive.net/display/Public/Wiki.
  • R. Pugalenthi, M. P. Rajakumar, J. Ramya, and V. Rajinikanth, “Evaluation and classification of the brain tumor MRI using machine learning technique,” J. Control Eng. Appl. Inf., Vol. 21, no. 4, pp. 12–21, 2019.
  • S. Vigneshwaran, V. Govindaraj, P. R. Murugan, Y. Zhang, and T. A. Prasath, “Unsupervised learning-based clustering approach for smart identification of pathologies and segmentation of tissues in brain magnetic resonance imaging,” Int. J. Imaging Syst. Technol., Vol. 29, no. 4, pp. 439–56, 2019.
  • M. Ahmad, M. Hassan, I. Shafi, and A. Osman, “Classification of tumors in human brain MRI using wavelet and support vector machine,” IOSR J. Comput. Eng., Vol. 8, no. 2, pp. 25–31, 2012.
  • S. A. El-Dahshan, T. Hosny, and A. B. M. Salem, “Hybrid intelligent techniques for MRI brain images classification,” Digit. Signal. Process., Vol. 20, no. 2, pp. 433–41, 2010.
  • A. Devi, and M. P. Rajasekaran. “Performance evaluation of MRI pancreas image classification using artificial neural network (ANN),” in Smart Intelligent Computing and Applications, Springer, Singapore, 2019, pp. 671–81.
  • A. Pashaei, M. Ghatee, and H. Sajedi, “Convolution neural network joint with mixture of extreme learning machines for feature extraction and classification of accident images,” J. Real-Time Image Process., Vol. 17, no. 4, pp. 1051–66, 2020.
  • A. Gumaei, M. M. Hassan, M. R. Hassan, A. Alelaiwi, and G. Fortino, “A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification,” IEEE Access, Vol. 7, pp. 36266–73, 2019.
  • C. Ge, I. Y. H. Gu, A. S. Jakola, and J. Yang. “Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Jul 2018, pp. 5894–7.
  • J. Amin, M. Sharif, N. Gul, M. Yasmin, and S. A. Shad, “Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network,” Pattern Recognit. Lett., Vol. 129, pp. 115–22, 2020.
  • M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, and S. W. Baik, “Multi-grade brain tumor classification using deep CNN with extensive data augmentation,” J. Comput. Sci., Vol. 30, pp. 174–82, 2019.
  • A. K. Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms,” Biocybernetics Biomed. Eng., Vol. 39, no. 1, pp. 63–74, 2019.
  • Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, and J. Lu, “Brain tumor classification for MR images using transfer learning and fine-tuning,” Comput. Med. Imaging Graph., Vol. 75, pp. 34–46, 2019.
  • S. Deepak, and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer learning,” Comput. Biol. Med., Vol. 111, pp. 103345, 2019.
  • R. L. Kumar, J. Kakarla, B. V. Isunuri, and M. Singh, “Multi-class brain tumor classification using residual network and global average pooling,” Multimed. Tools. Appl., Vol. 80, no. 9, pp. 13429–38, 2021.
  • N. S. Shaik, and T. K. Cherukuri, “Multi-level attention network: application to brain tumor classification,” Signal. Image Video. Process., Vol. 16, no. 3, pp. 817–24, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.