293
Views
1
CrossRef citations to date
0
Altmetric
Electronic circuits devices and components

Demonstration of Temperature-Dependent Analysis of GAA – β-(AlGa)2O3/Ga2O3 High Electron Mobility Transistor

ORCID Icon, &

References

  • Y. Zhang, et al., “Evaluation of low-temperature saturation velocity in β-(Al x Ga 1–x) 2 O 3/Ga 2 O 3 Modulation-Doped Field-Effect Transistors,” IEEE Trans. Electron Devices, Vol. 66, no. 3, pp. 1574–78, 2019.
  • M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (GO) metal-semiconductor field-effect transistors on single-crystal β-GO (010) substrates,” Appl. Phys. Lett, Vol. 100, pp. 013504, 2012.
  • M. Higashiwaki, et al., “Recent progress in GO power devices,” Semicond. Sci. Technol, Vol. 31, pp. 34001, 2016.
  • G. Jessen, et al. in Device Res. Conf., Vol. 75th Annua (2017), pp. 1–2.
  • R. Ranjan, N. Kashyap, and A. Raman, “Design and investigation of field plate-based vertical GAA–β-(AlGa) 2O3/Ga2O3 high electron mobility transistor,” Superlattices Microstruct., Vol. 107117, 2021.
  • A. Patnaik, N. K. Jaiswal, R. Singh, and P. Sharma, “Analytical model for 2DEG charge density in β-(Al x Ga1− x) 2O3/Ga2O3 HFET,” Semicond. Sci. Technol., Vol. 37, no. 2, pp. 025002, 2021.
  • Y. Zhang, et al., “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x) 2O3/GO heterostructures,” Appl. Phys. Lett., Vol. 112, no. 17, pp. 173502, 2018.
  • T. Wang, W. Li, C. Ni, and A. Janotti, “Band gap and band offset of Ga 2 O 3 and (Al x Ga 1− x) 2 O 3 alloys,” Phys. Rev. Appl., Vol. 10, no. 1, pp. 011003, 2018.
  • B. W. Krueger, C. S. Dandeneau, E. M. Nelson, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Variation of Band Gap and Lattice Parameters of β−(AlxGa1− x) 2O3 powder produced by solution combustion synthesis,” J. Am. Ceram. Soc., Vol. 99, no. 7, pp. 2467–73, 2016.
  • F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, “Wide bandgap engineering of (AlGa) 2O3 films,” Appl. Phys. Lett., Vol. 105, no. 16, pp. 162107, 2014.
  • M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated GO MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron. Device Lett., Vol. 37, no. 2, pp. 212–5, Feb. 2016. doi:10.1109/LED.2015.2512279.
  • K. D. Chabak, et al., “Enhancement-mode GO wrap-gate fin fieldeffect transistors on native (100) β-GO substrate with high breakdown voltage,” Appl. Phys. Lett, Vol. 109, no. 21, pp. 213501, 2016. doi:10.1063/1.4967931.
  • K. Zeng, A. Vaidya, and U. Singisetti, “1.85 kv breakdown voltage in lateral field-plated GO MOSFETs,” IEEE Electron. Device Lett., Vol. 39, no. 9, pp. 1385–8, Sep. 2018. doi:10.1109/LED.2018.2859049.
  • K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical GO field-plated Schottky barrier diodes,” Appl. Phys. Lett., Vol. 110, no. 10, pp. 103506, 2017. doi:10.1063/1.4977857.
  • J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, J. Kim, and A. Kuramata, “High reverse breakdown voltage Schottky rectifiers without edge termination on GO,” Appl. Phys. Lett., Vol. 110, no. 19, pp. 192101, 2017. doi:10.1063/1.4983203.
  • Z. Xia, et al., “β-Ga 2 O 3 Delta-Doped Field-Effect transistors with current gain cutoff frequency of 27 GHz,” IEEE Electron. Device Lett., Vol. 40, no. 7, pp. 1052–5, 2019.
  • A. J. Green, et al., “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron. Device Lett., Vol. 38, pp. 790, 2017.
  • N. K. Kalarickal, et al., “High electron density β-(Al0. 17Ga0. 83) 2O3/GO modulation doping using an ultra-thin (1 nm) spacer layer,” J. Appl. Phys., Vol. 127, no. 21, pp. 215706, 2020.
  • R. Ranjan, N. Kashyap, and A. Raman, “High-performance dual-gate-charge-plasma-AlGaN/GaN MIS-HEMT,” Appl. Phys. A, Vol. 126, no. 3, pp. 1–9, 2020.
  • T. V. Kumar, and N. B. Balamurugan, “Analytical modeling of InSb/AlInSb heterostructure dual gate high electron mobility transistors,” AEU-Int. J. Electron. Commun., Vol. 94, pp. 19–25, 2018.
  • S. K. Radhakrishnan, B. Subramaniyan, M. Anandan, and M. Nagarajan, “Comparative assessment of InGaAs sub-channel and InAs composite channel double gate (DG)-HEMT for sub-millimeter wave applications,” AEU - Int J Electron Commun, Vol. 83, pp. 462–9, 2018.
  • Lim, Y., Rustagi, S. and Bera, L., “Ultra-Narrow Silicon Nanowire (−3nm) Gate-All-Around MOSFETs,” In Extended abstracts of the … Conference on Solid State Devices and Materials (Vol. 2006, pp. 548–549), 2006, September.
  • S. Singh, and A. Raman, “Gate-All-Around charge plasma-based dual material gate-stack Nanowire FET for enhanced analog performance,” IEEE Trans. Electron. Devices, Vol. 65, no. 7, pp. 3026–3032, 2018.
  • A. Varghese, C. Periasamy, L. Bhargava, S. B. Dolmanan, and S. Tripathy, “Linear and circular AlGaN/AlN/GaN MOS-HEMT-based pH sensor on Si substrate: A comparative analysis,” IEEE Sens. Lett., Vol. 3, no. 4, pp. 1–4, 2019.
  • K. L. Hsu, and M. C. Wu, “Fabrication and characterization of flexible AlGaN/GaN HEMTs on Kapton Tape,” IEEE Trans. Electron. Devices, Vol. 68, no. 7, pp. 3320–3324, 2021.
  • ATLAS Device Simulation Software. Silvaco International, Santa Clara, CA, USA, 2014.
  • S. Krishnamoorthy, et al., “Modulation-doped β-(Al0. 2Ga0. 8) 2O3/GO field-effect transistor,” Appl. Phys. Lett., Vol. 111, no. 2, pp. 023502, 2017 Jul 10.
  • R. Ranjan, N. Kashyap, and A. Raman, “Effects of gate width variation on the performance of Normally-OFF dual-recessed gate MIS AlGaN/GaN HEMT,” Int. J. Numer. Model. Electron. Networks Devices Fields, Vol. 35, no. 2, pp. e2960, 2022.
  • A. K. Gupta, A. Raman, and N. Kumar, “Design and investigation of a novel charge plasma-based core-shell ring-TFET: Analog and linearity analysis,” IEEE Trans. Electron. Devices, Vol. 66, no. 8, pp. 3506–3512, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.