258
Views
0
CrossRef citations to date
0
Altmetric
Computers and computing

Cross-Task Cognitive Load Classification with Identity Mapping-Based Distributed CNN and Attention-Based RNN Using Gabor Decomposed Data Images

ORCID Icon, , , &

References

  • J. Sweller, “Cognitive load theory,” Psychol. Learn. Motiv., Vol. 55, pp. 37–76, 2011. Elsevier. DOI:10.1016/B978-0-12-387691-1.00002-8
  • P. Antonenko, F. Paas, R. Grabner, and T. Van Gog, “Using electroencephalography to measure cognitive load,” Educ. Psychol. Rev., Vol. 22, no. 4, pp. 425–438, 2010. DOI:10.1007/s10648-010-9130-y
  • Y. Ke, et al., “An EEG-based mental workload estimator trained on working memory task can work well under simulated multi-attribute task,” Front. Hum. Neurosci., Vol. 8, no. 703, pp. 1–10, 2014. DOI:10.3389/fnhum.2014.00703
  • J. Touryan, B. J. Lance, S. E. Kerick, A. J. Ries, and K. McDowell, “Common EEG features for behavioral estimation in disparate, real-world tasks,” Biol. Psychol., Vol. 114, pp. 93–107, 2016. DOI:10.1016/j.biopsycho.2015.12.009
  • G. N. Dimitrakopoulos, I. Kakkos, Z. Dai, J. Lim, J. J. de Souza, A. Bezerianos, and Y. Sun, “Task- independent mental workload classification based upon common multiband EEG cortical connectivity,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 25, no. 11, pp. 1940–1949, 2017. DOI:10.1109/TNSRE.2017.2701002
  • R. G. Hefron, and B. J. Borghetti, “A new feature for cross-day psychophysiological workload estimation,” in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, pp. 785–790. IEEE.
  • J. Zhang, Y. Wang, and S. Li, “Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques,” Cogn. Technol. Work, Vol. 19, no. 4, pp. 587–605, 2017. DOI:10.1007/s10111-017-0425-3
  • R. Sharma, R. B. Pachori, and P. Sircar, “Automated emotion recognition based on higher order statistics and deep learning algorithm,” Biomed. Signal. Process. Control., Vol. 58, pp. 101867, 2020. DOI:10.1016/j.bspc.2020.101867
  • A. Singhal, R. Shukla, P. K. Kankar, S. Dubey, S. Singh, and R. B. Pachori, “Comparing the capabilities of transfer learning models to detect skin lesion in humans,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 234, no. 10, pp. 1083–1093, 2020. DOI:10.1177/0954411920939829
  • N. Cudlenco, N. Popescu, and M. Leordeanu, “Reading into the mind’s eye: boosting automatic visual recognition with EEG signals,” Neurocomputing, Vol. 386, pp. 281–292, 2020. DOI:10.1016/j.neucom.2019.12.076
  • M. Abadi, M. Khoudeir, and S. Marchand, “Gabor filter-based texture features to archaeological ceramic materials characteri- zation,” in International Conference on Image and Signal Processing, 2012, pp. 333–342. Springer.
  • Y. Hamamoto, S. Uchimura, M. Watanabe, T. Yasuda, Y. Mitani, and S. Tomita, “A Gabor filter-based method for recognizing handwritten numerals,” Pattern Recognit., Vol. 31, no. 4, pp. 395–400, 1998. DOI:10.1016/S0031-3203(97)00057-5
  • J. Arrospide, and L. Salgado, “Log-Gabor filters for image-based vehicle verification,” IEEE Trans. Image Process., Vol. 22, no. 6, pp. 2286–2295, 2013. DOI:10.1109/TIP.2013.2249080
  • M. Jimnez-Guarneros, and P. Gomez-Gil, “Custom domain adaptation: a new method for cross-subject, EEG-based cognitive load recognition,” IEEE Signal Process Lett., Vol. 27, pp. 750–754, 2020. DOI:10.1109/LSP.2020.2989663
  • Ç. İ. Acı, M. Kaya, and Y. Mishchenko, “Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods,” Expert. Syst. Appl., Vol. 134, pp. 153–166, 2019. DOI:10.1016/j.eswa.2019.05.057
  • S. Simpraga, R. Alvarez-Jimenez, H. D. Mansvelder, J. M. Van Gerven, G. J. Groeneveld, S.-S. Poil, and K. Linkenkaer-Hansen, “EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease,” Sci. Rep., Vol. 7, no. 1, pp. 1–11, 2017. DOI:10.1038/s41598-017-06165-4
  • C. Walter, S. Schmidt, W. Rosenstiel, P. Gerjets, and M. Bogdan, “Using cross-task classification for classifying workload levels in complex learning tasks,” in 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, 2013, pp. 876–881. IEEE.
  • Y. Ke, et al., “Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression,” Int. J. Psychophysiol., Vol. 98, no. 2, pp. 157–166, 2015. DOI:10.1016/j.ijpsycho.2015.10.004
  • C. L. Baldwin, and B. N. Penaranda, “Adaptive training using an artificial neural network and EEG metrics for within-and cross-task workload classification,” NeuroImage, Vol. 59, no. 1, pp. 48–56, 2012. DOI:10.1016/j.neuroimage.2011.07.047
  • Y. Zhou, et al., “Cross-Task cognitive workload recognition based on EEG and domain adaptation,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 30, pp. 50–60, 2022. DOI:10.1109/TNSRE.2022.3140456
  • W. L. Lim, O. Sourina, and L. Wang, “Cross dataset workload classification using encoded wavelet decomposition features,” in 2018 International Conference on Cyberworlds (CW), 2018. IEEE.
  • I. Kakkos, et al., “EEG fingerprints of task-independent mental workload discrimination,” IEEE. J. Biomed. Health. Inform., Vol. 25, no. 10, pp. 3824–3833, 2021. DOI:10.1109/JBHI.2021.3085131
  • Y. Ke, et al., “Cross-task consistency of EEG-based mental workload indicators: comparisons between power spectral density and task-irrelevant auditory event-related potentials,” Front. Neurosci., Vol. 15, pp. 1–14, 2021. DOI:10.3389/fnins.2021.703139
  • P. Gerjets, C. Walter, W. Rosenstiel, M. Bogdan, and T.O. Zander, “Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach,” Front. Neurosci., Vol. 8, pp. 385, 2014. DOI:10.3389/fnins.2014.00385
  • G. Zhao, Y.-J. Liu, and Y. Shi, “Real-time assessment of the cross-task mental workload using physiological measures during anomaly detection,” IEEE Transactions on Human-Machine Systems, Vol. 48, no. 2, pp. 149–160, 2018. DOI:10.1109/THMS.2018.2803025
  • P. Zhang, X. Wang, J. Chen, W. You, and W. Zhang, “Spectral and temporal feature learning with two-stream neural networks for mental workload assessment,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 27, no. 6, pp. 1149–1159, 2019. DOI:10.1109/TNSRE.2019.2913400
  • S. Madhavan, R. K. Tripathy, and R. B. Pachori, “Time-frequency domain deep convolutional neural network for the classification of focal and non-focal EEG signals,” IEEE Sensors J., Vol. 20, no. 6, pp. 3078–3086, 2020. DOI:10.1109/JSEN.2019.2956072
  • Z. Jiao, X. Gao, Y. Wang, J. Li, and H. Xu, “Deep convolutional neural networks for mental load classification based on EEG data,” Pattern Recognit., Vol. 76, pp. 582–595, 2018. DOI:10.1016/j.patcog.2017.12.002
  • A. Kamrud, B. Borghetti, C. S. Kabban, and M. Miller, “Generalized deep learning EEG models for cross- participant and cross-task detection of the vigilance decrement in sustained attention tasks,” Sensors, Vol. 21, no. 16, pp. 1–24, 2021, article no. 5617. DOI:10.3390/s21165617
  • L. Xu, M. Xu, Y. Ke, X. An, S. Liu, and D. Ming, “Cross-dataset variability problem in EEG decoding with deep learning,” Front. Hum. Neurosci., Vol. 14, pp. 103, 2020. DOI:10.3389/fnhum.2020.00103
  • R. Hefron, B. Borghetti, C. Schubert Kabban, J. Christensen James, and J. Estepp, “Cross-participant EEG-based assessment of cognitive workload using multi-path convolutional recurrent neural networks,” Sensors, Vol. 18, no. 5, pp. 1339, 2018. DOI:10.3390/s18051339
  • P. Zhang, X. Wang, W. Zhang, and J. Chen, “Learning spatial–spectral–temporal EEG features with recurrent 3d convolutional neural networks for cross-task mental workload assessment,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 27, no. 1, pp. 31–42, 2019. DOI:10.1109/TNSRE.2018.2884641
  • S. S. Gupta, T. J. Taori, M. Y. Ladekar, R. R. Manthalkar, S. S. Gajre, and Y. V. Joshi, “Classification of cross task cognitive workload using deep recurrent network with modelling of temporal dynamics,” Biomed. Signal. Process. Control., Vol. 70, pp. 103070, 2021. DOI:10.1016/j.bspc.2021.103070
  • A. Alekseev, and A. Bobe, “Gabornet, “gabor filters with learnable parameters in deep convolutional neural network,”,” in 2019 International Conference on Engineering and Telecommunication (EnT), 2019, pp. 1–4. IEEE.
  • A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Adv. Neural. Inf. Process. Syst., Vol. 25, pp. 1097–1105, 2012.
  • K. Simonyan, and A. Zisserman. “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  • K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  • C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
  • S. Luan, C. Chen, B. Zhang, J. Han, and J. Liu, “Gabor convolutional networks,” IEEE Trans. Image Process., Vol. 27, no. 9, pp. 4357–4366, 2018. DOI:10.1109/TIP.2018.2835143
  • T. Sunil Kumar, and V. Kanhangad, “Gabor filter-based one-dimensional local phase descriptors for obstructive sleep apnea detection using single-lead ECG,” IEEE Sensors Letters, Vol. 2, no. 1, pp. 1–4, 2018.
  • K. Samiee, P. Kovács, and M. Gabbouj, “Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local gabor binary patterns feature extraction,” Knowl. Based. Syst., Vol. 118, pp. 228–240, 2017. DOI:10.1016/j.knosys.2016.11.023
  • S. S. Gupta, and R. R. Manthalkar, “Classification of visual cognitive workload using analytic wavelet transform,” Biomed. Signal. Process. Control., Vol. 61, pp. 101961, 2020. DOI:10.1016/j.bspc.2020.101961
  • M. Y. Ladekar, S. S. Gupta, Y. V. Joshi, and R. R. Manthalkar, “EEG based visual cognitive workload analysis using multirate iir filters,” Biomed. Signal. Process. Control., Vol. 68, pp. 102819, 2021. DOI:10.1016/j.bspc.2021.102819
  • J. Sola, and J. Sevilla, “Importance of input data normalization for the application of neural networks to complex industrial problems,” IEEE Trans. Nucl. Sci., Vol. 44, no. 3, pp. 1464–1468, 1997. DOI:10.1109/23.589532
  • Q. Wang, and O. Sourina, “Real-time mental arithmetic task recognition from EEG signals,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 21, no. 2, pp. 225–232, 2013. DOI:10.1109/TNSRE.2012.2236576
  • S. Molaei, and M. E. Shiri Ahmad Abadi, “Maintaining filter structure: A gabor-based convolutional neural network for image analysis,” Appl. Soft. Comput., Vol. 88, pp. 105960, 2020. DOI:10.1016/j.asoc.2019.105960
  • M. Hardt, and T. Ma, “Identity matters in deep learning” arXiv preprint arXiv:1611.04231</, 2016.
  • J. V. Dillon, et al. “Tensorflow distributions” arXiv preprint arXiv:1711.10604</, 2017.
  • A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., Vol. 16, no. 3, pp. 031001, 2019. DOI:10.1088/1741-2552/ab0ab5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.