1,092
Views
0
CrossRef citations to date
0
Altmetric
Articles

Proglacial lake expansion and glacier retreat in Arctic Sweden

, &
Pages 268-287 | Received 02 Dec 2021, Accepted 15 Aug 2022, Published online: 24 Oct 2022

References

  • Andreassen LM, Elvehøy H, Kjøllmoen B, Belart JM. 2020. Glacier change in Norway since the 1960s – an overview of mass balance, area, length and surface elevation changes. J Glaciol. 66(256):313–328.
  • Andreassen L, Nagy T, Kjøllmoen B, Leigh J. 2022. An inventory of Norway's glaciers and ice-marginal lakes from 2018-19 Sentinel-2 data. J Glaciol. 1–22. doi:10.1017/jog.2022.20.
  • Arendt A, Bolch T, Cogley JG, Gardner A, Hagen JO, Hock R, Kaser G, Pfeffer WT, Moholdt G, Paul F, Radic V. 2012. Randolph Glacier Inventory [v2. 0]: a dataset of global glacier outlines, global land ice measurements from space, Boulder Colorado, USA. Digit Media. https://www.researchgate.net/publication/258045687_Randolph_Glacier_Inventory_v2_0_A_Dataset_of_Global_Glacier_Outlines_Global_Land_Ice_Measurements_from_Space_Boulder_Colorado_USA
  • Birkett CM, Mason IM.. 1995. A new global lakes database for a remote sensing program studying climatically sensitive large lakes. J Great Lakes Res. 21(3):307–318. doi:10.1016/S0380-1330(95)71041-3.
  • Bonan DB, Christian JE, Christianson K. 2019. Influence of North Atlantic climate variability on glacier mass balance in Norway, Sweden and Svalbard. J Glaciol. 65(252):1–15.
  • Boyce ES, Motyka RJ, Truffer M. 2007. Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA. J Glaciol. 53(181):211–224.
  • Brugger KA. 2007. The non-synchronous response of Rabots Glaciär and Storglaciären, northern Sweden, to recent climate change: a comparative study. Ann Glaciol. 46:275–282.
  • Buchroithner MF, Jentsch G, Wanivenhaus B. 1982. Monitoring of recent geological events in the Khumbu area (Himalaya, Nepal) by digital processing of Landsat MSS data. Rock Mech. 15(4):181–197.
  • Carr JR, Stokes CR, Vieli A. 2013. Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: twenty years of rapid change. Prog Phys Geogr. 37(4):436–467.
  • Carrivick JL, Quincey DJ.. 2014. Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Glob Planet Change. 116:156–163. doi:10.1016/j.gloplacha.2014.02.009.
  • Carrivick JL, Tweed FS. 2013. Proglacial lakes: character, behaviour and geological importance. Quat Sci Rev. 78:34–52.
  • Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, et al. 2010. The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes. 21(2):156–181.
  • Clague JJ, Evans SG. 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat Sci Rev. 19(17-18):1763–1783.
  • Cook SJ, Quincey DJ. 2015. Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics. 3(4):559–575.
  • Cook SJ, Swift DA. 2012. Subglacial basins: their origin and importance in glacial systems and landscapes. Earth Sci Rev. 115(4):332–372.
  • Denton GH, Karlén W. 1973. Lichenometry: its application to Holocene moraine studies in southern Alaska and Swedish Lapland. Arct Alp Res. 5(4):347–372.
  • Dye A, Bryant R, Dodd E, Falcini F, Rippin DM. 2021. Warm Arctic proglacial lakes in the ASTER surface temperature product. Remote Sens (Basel). 13(15):2987.
  • Emmer A. 2018. GLOFs in the WOS: bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of science, 1979–2016). Nat Haz Earth Syst Sci. 18(3):813–827.
  • Farinotti D, Pistocchi A, Huss M. 2016. From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps? Environ Res Lett. 11(5):054022.
  • Fellman JB, Nagorski S, Pyare S, Vermilyea AW, Scott D, Hood E. 2014. Stream temperature response to variable glacier coverage in coastal watersheds of Southeast Alaska. Hydrol Processes. 28(4):2062–2073.
  • Frey H, Haeberli W, Linsbauer A, Huggel C, Paul F. 2010. A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Nat Hazards Earth Syst Sci. 10(2):339–352.
  • Gardelle J, Arnaud Y, Berthier E. 2011. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Change. 75(1-2):47–55.
  • Ghimire M. 2004. Review of studies on glacier lake outburst floods and associated vulnerability in the Himalayas. Himal Rev. 35-36:49–64.
  • Goodfellow BW, Stroeven AP, Hättestrand C, Kleman J, Jansson KN. 2008. Deciphering a non-glacial/glacial landscape mosaic in the northern Swedish mountains. Geomorphology. 93(3):213–232.
  • Hanshaw MN, Bookhagen B. 2014. Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere. 8(2):359–376.
  • Hock R, Johansson M, Jansson P, Barring L. 2002. Modeling climate conditions required for glacier formation in cirques of the Rassepautasjtjåkka Massif, Northern Sweden. Arct Antarct Alp Res. 34(1):3–11.
  • Holmlund ES, Holmlund P. 2019. Constraining 135 years of mass balance with historic structure-from-motion photogrammetry on Storglaciären, Sweden. Geogr Ann A. 101(3):195–210.
  • Holmlund P, Karlén W, Grudd H. 1996. Fifty years of mass balance and glacier front observations at the Tarfala research station. Geogr Ann A. 78(2-3):105–114.
  • How P, Messerli A, Mätzler E, Santoro M, Wiesmann A, Caduff R, Langley K, Bojesen MH, Paul F, Kääb A, Carrivick JL. 2021. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci Rep. 11(1). doi:10.1038/s41598-021-83509-1.
  • Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F. 2002. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J. 39(2):316–330.
  • IPCC. 2019. IPCC special report on the Ocean and Cryosphere in a changing climate. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold, J, Rama B, Weyer NM, editors. In press.
  • Jansson P, Hock R, Schneider T. 2003. The concept of glacier storage: a review. J Hydrol. 282(1-4):116–129.
  • Jonsell U, Hock R, Duguay M. 2013. Recent air and ground temperature increases at Tarfala Research Station, Sweden. Polar Res. 32:19807.
  • Karlén W. 1973. Holocene glacier and climatic variations, Kebnekaise mountains, Swedish Lapland. Geogr Ann A 55: 29–63.
  • Karlén W. 2017. Holocene glacier and climatic variations, Kebnekaise Mountains, Swedish Lapland. Geogra Ann A. 55(1):29–63. doi:10.1080/04353676.1973.11879879.
  • Kim S, Sinclair VA, Räisänen J, Ruuhela R. 2018. Heat waves in Finland: present and projected summertime extreme temperatures and their associated circulation patterns. Int J Climatol. 38(3):1393–1408.
  • King O, Dehecq A, Quincey D, Carrivick J. 2018. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob Planet Change. 167:46–60.
  • King O, Quincey DJ, Carrivick JL, Rowan AV. 2017. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosphere. 11(1):407–426.
  • Kirchner N, Kuttenkeuler J, Rosqvist G, Hancke M, Granebeck A, Weckström J, Weckström K, Schenk F, Korhola A, Eriksson P. 2021. A first continuous three-year temperature record from the dimictic Arctic–alpine lake Tarfala, Northern Sweden. Arct Antarct Alp Res. 53(1):69–79.
  • Kirchner N, Noormets R, Kuttenkeuler J, Erstorp ES, Holmlund ES, Rosqvist G, Holmlund P, Wennbom M, Karlin T. 2019. High-resolution bathymetric mapping reveals subaqueous glacial landforms in the Arctic alpine lake Tarfala, Sweden. J Quaternary Sci. 34(6):452–462.
  • Kirkbride MP. 1993. The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. Holocene. 3(3):232–240.
  • Kirkbride MP, Warren CR. 1997. Calving processes at a grounded ice cliff. Ann Glaciol. 24:116–121.
  • Kneisel C. 2010. Frozen ground conditions in a subarctic mountain environment, Northern Sweden. Geomorphology. 118(1-2):80–92. doi:10.1016/j.geomorph.2009.12.010.
  • Komori J. 2008. Recent expansions of glacial lakes in the Bhutan Himalayas. Quat Int. 184(1):177–186. doi:10.1016/j.quaint.2007.09.012.
  • Kumar R, Bahuguna IM, Ali SN, Singh R. 2020. Lake inventory and evolution of glacial lakes in the Nubra-Shyok basin of Karakoram Range. Earth Sys Environ. 4(1):57–70.
  • Lea JM, Mair DW, Rea BR. 2014. Evaluation of existing and new methods of tracking glacier terminus change. J Glaciol. 220(60):323–333.
  • Lliboutry L, Morales Arnao B, Pautre A, Schneider B. 1977. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I. Historical failures of morainic dams, their causes and prevention. J Glaciol. 18(79):239–254.
  • Loriaux T, Casassa G. 2013. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Glob Planet Change. 102:33–40.
  • Mallalieu J, Carrivick JL, Quincey DJ, Smith MW. 2020. Calving seasonality associated with melt-undercutting and lake ice cover. Geophys Res Lett. 47(8):e2019GL086561.
  • Minowa M, Sugiyama S, Sakakibara D, Skvarca P. 2017. Seasonal variations in ice-front position controlled by Frontal Ablation at Glaciar Perito Moreno, the Southern Patagonia Icefield. Front Earth Sci. 5:F01005. doi:10.3389/feart.2017.00001.
  • Østrem G. 1964. Ice-cored moraines in Scandinavia. Geogr Ann. 46(3):282–337.
  • Paul F, Winsvold SH, Kääb A, Nagler T, Schwaizer G. 2016. Glacier remote sensing using sentinel-2. Part II: mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens (Basel). 8(7):575.
  • Pettersson R, Jansson P, Holmlund P. 2003. Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys. J Geophys Res Earth Surf. 108:F1.
  • Pierre KAS, Louis VLS, Schiff SL, Lehnherr I, Dainard PG, Gardner AS, Aukes PJ, Sharp MJ. 2019. Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2. Proc Natl Acad Sci USA. 116(36):17690–17695.
  • Pohjola VA, Rogers JC. 1997. Atmospheric circulation and variations in Scandinavian glacier mass balance. Quat Res. 47(1):29–36.
  • Reinardy BT, Booth AD, Hughes AL, Boston CM, Åkesson H, Bakke J, Nesje A, Giesen RH, Pearce DM. 2019. Pervasive cold ice within a temperate glacier – implications for glacier thermal regimes, sediment transport and foreland geomorphology. Cryosphere. 13(3):827–843.
  • Rippin DM, Carrivick JL, Williams C. 2011. Evidence towards a thermal lag in the response of Karsaglaciären, northern Sweden, to climate change. J Glaciol. 57(205):895–903.
  • Robertson CM, Benn DI, Brook MS, Fuller IC, Holt KA. 2012. Subaqueous calving margin morphology at Mueller, Hooker and Tasman glaciers in Aoraki/Mount Cook National Park, New Zealand. J Glaciol. 58(212):1037–1046.
  • Röhl K. 2006. Thermo-erosional notch development at fresh-water-calving Tasman Glacier, New Zealand. J Glaciol. 52(177):203–213. doi:10.3189/172756506781828773.
  • Sakakibara D, Sugiyama S. 2014. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J Geophys Res Earth Surf. 119(11):2541–2554. doi:10.1002/2014JF003148.
  • Sinclair VA, Mikkola JW, Rantanen M, Raisanen J. 2019. The summer 2018 heatwave in Finland. Weather. 74(11):403–409. doi:10.1002/wea.v74.11.
  • Svenonius F, Westman J, Hamberg A, Gavelin A, Enquist F. 1910. Die Gletscher Schwedens im Jahre 1908 [The Swedish glaciers in the year 1908]: Stockholm, Kungl. boktryckeriet, PA Norstedt oh söner. Sveriges geologiska undersökning, Series Ca (Avhandlingar och uppsatser i kvarto och folio), (5).
  • Trüssel BL, Motyka RJ, Truffer M, Larsen CF. 2013. Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA. J Glaciol. 59(213):149–161.
  • Tsutaki S, Sugiyama S, Nishimura D, Funk M. 2013. Acceleration and flotation of a glacier terminus during formation of a proglacial lake in Rhonegletscher, Switzerland. J Glaciol. 59(215):559–570.
  • Vogel H, Wagner B, Rosén P. 2013. Lake floor morphology and sediment architecture of lake Torneträsk, Northern Sweden. Geogr Ann A. 95(2):159–170.
  • Wang W, Xiang Y, Gao Y, Lu A, Yao T. 2015. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol Processes. 29(6):859–874.
  • Warren CR, Kirkbride MP. 1998. Temperature and bathymetry of ice-contact lakes in Mount Cook National Park, New Zealand. New Zeal J Geol Geop. 41(2):133–143.
  • Warren CR, Kirkbride MP. 2003. Calving speed and climatic sensitivity of New Zealand lake-calving glaciers. Ann Glaciol. 36:173–178. doi:10.3189/172756403781816446.
  • Watson CS, Kargel JS, Shugar DH, Haritashya UK, Schiassi E, Furfaro R. 2020. Mass loss from calving in Himalayan proglacial lakes. Front Earth Sci. 7:342.
  • Yao X, Liu S, Han L, Sun M, Zhao L. 2018. Definition and classification system of glacial lake for inventory and hazards study. J Geog Sci. 28(2):193–205.