477
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging contaminants – general aspects: sources, substances involved, and quantification

, , , , , , , , , , , , , , , & show all

References

  • Puri, M.; Gandhi, K.; Kumar, M. S. Emerging Environmental Contaminants: A Global Perspective on Policies and Regulations. J. Environ. Manage. 2023, 332, 117344. 10.1016/j.jenvman.2023.117344
  • Morin-Crini, N.; Lichtfouse, E.; Liu, G. R.; Balaram, V.; Ribeiro, A. R. L.; Lu, Z. J.; Stock, F.; Carmona, E.; Teixeira, M. R.; Picos-Corrales, L. A.; et al. Worldwide Cases of Water Pollution by Emerging Contaminants: A Review. Environ. Chem. Lett. 2022, 20, 2311–2338. doi:10.1007/s10311-022-01447-4.
  • Ferreira, S. L. C.; Da Silva, J. B.; Dos Santos, I. F.; De Oliveira, O. M. C.; Cerda, V.; Queiroz, A. F. S. Use of Pollution Indices and Ecological Risk in the Assessment of Contamination from Chemical Elements in Soils and sediments - Practical Aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. doi:10.1016/j.teac.2022.e00169.
  • Martin, J.; Santos, J. L.; Aparicio, I.; Alonso, E. Microplastics and Associated Emerging Contaminants in the Environment: Analysis, Sorption Mechanisms and Effects of co-Exposure. Trends Environ. Anal. Chem. 2022, 35, e00170. doi:10.1016/j.teac.2022.e00170.
  • Smichowski, P. Antimony in the Environment as a Global Pollutant: A Review on Analytical Methodologies for Its Determination in Atmospheric Aerosols. Talanta 2008, 75, 2–14. doi:10.1016/j.talanta.2007.11.005.
  • Kravchenko, J.; Darrah, T. H.; Miller, R. K.; Lyerly, H. K.; Vengosh, A. A Review of the Health Impacts of Barium from Natural and Anthropogenic Exposure. Environ. Geochem. Health. 2014, 36, 797–814. doi:10.1007/s10653-014-9622-7.
  • Bau, M.; Dulski, P. Anthropogenic Origin of Positive Gadolinium Anomalies in River Waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. 10.1016/0012-821X(96)00127-6
  • D'elia, V.; Montalvo García, G.; García Ruiz, C. Spectroscopic Trends for the Determination of Illicit Drugs in Oral Fluid. Appl. Spectrosc. Rev. 2015, 50, 775–796. 10.1080/05704928.2015.1075206
  • Mejias, C.; Martin, J.; Santos, J. L.; Aparicio, I.; Alonso, E. Occurrence of Pharmaceuticals and Their Metabolites in Sewage Sludge and Soil: A Review on Their Distribution and Environmental Risk Assessment. Trends Environ. Anal. Chem. 2021, 30, e00125. 10.1016/j.teac.2021.e00125
  • Khasawneh, O. F. S.; Palaniandy, P. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants. Process Saf. Environ. Prot 2021, 150, 532–556. 10.1016/j.psep.2021.04.045
  • Corbett, J. Hair Colorants: Chemistry and Toxicology. Micelle Press; 1998.
  • De Oliveira, R. a G.; Zanoni, T. B.; Bessegato, G. G.; Oliveira, D. P.; Umbuzeiro, G. A.; Zanoni, M. V. B. The Chemistry and Toxicity of Hair Dyes. Quim. Nova 2014, 37, 1037–1046. doi:10.5935/0100-4042.20140143.
  • Chehrehei, M.; Mirzahosseini, S. a H.; Mansouri, N.; Behzadi, M. H.; Rashidi, Y. Determination of the Permissible Distances in Vicinity of the Gas Station according to the Concentration of Benzene. Res. Square 2021, 1, 1–14. doi:10.21203/rs.3.rs-950634/v1.
  • Kolosov, A.; Yaremenko, S.; Garmonov, K.; Sklyarov, K. Influence of Gas Stations on the Ecology of the Urban Environment. E3S Web Conf. 2020, 164, 07031. 10.1051/e3sconf/202016407031
  • Silva, A. B.; Bastos, A. S.; Justino, C. I.; Da Costa, J. P.; Duarte, A. C.; Rocha-Santos, T. A. Microplastics in the Environment: Challenges in Analytical chemistry-A Review. Anal. Chim. Acta. 2018, 1017, 1–19. 10.1016/j.aca.2018.02.043
  • Morgado, V.; Palma, C.; Bettencourt Da Silva, R. J. Bottom-Up Evaluation of the Uncertainty of the Quantification of Microplastics Contamination in Sediment Samples. Environ. Sci. Technol. 2022, 56, 11080–11090. 10.1021/acs.est.2c01828
  • Ojo, O. A.; Oyelami, C. A.; Fakunle, M. A.; Ogundana, A. K.; Ajayi, O. E.; Uche, T. E. Integrated Approach to Unsaturated Zone Characterization as It Relates to Burial Practices and Its Impact on the Immediate Environment. Heliyon 2022, 8, e09831. doi:10.1016/j.heliyon.2022.e09831.
  • Zhao, L.; Deng, J.; Sun, P.; Liu, J.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y. Nanomaterials for Treating Emerging Contaminants in Water by Adsorption and Photocatalysis: Systematic Review and Bibliometric Analysis. Sci. Total Environ. 2018, 627, 1253–1263. 10.1016/j.scitotenv.2018.02.006
  • Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A. R. L.; Noutsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M. G. A.; Picos-Corrales, L. A.; Moreno-Piraján, J. C.; et al. Removal of Emerging Contaminants from Wastewater Using Advanced Treatments. A Review. Environ. Chem. Lett. 2022, 20, 1333–1375. 10.1007/s10311-021-01379-5
  • Santamaría, L.; Vicente, M. A.; Korili, S. A.; Gil, A. Progress in the Removal of Pharmaceutical Compounds from Aqueous Solution Using Layered Double Hydroxides as Adsorbents: A Review. J. Environ. Chem. Engin. 2020, 8, 104577. 10.1016/j.jece.2020.104577
  • Lu, Y.; Li, X.; Giovanni, C.; Wang, B. Construction of MOFs-Based Nanocomposite Membranes for Emerging Organic Contaminants Abatement in Water. Front. Environ. Sci. Eng. 2023, 17, 89. 10.1007/s11783-023-1689-x
  • Tiruneh Adugna, A. Development in Nanomembrane-Based Filtration of Emerging Contaminants. Phys. Sci. Rev. 2021, 000010151520210057.
  • Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring. Water Res. 2015, 72, 3–27. 10.1016/j.watres.2014.08.053
  • Parida, V. K.; Saidulu, D.; Majumder, A.; Srivastava, A.; Gupta, B.; Gupta, A. K. Emerging Contaminants in Wastewater: A Critical Review on Occurrence, Existing Legislations, Risk Assessment, and Sustainable Treatment Alternatives. J. Environ. Chem. Engin. 2021, 9, 105966. 10.1016/j.jece.2021.105966
  • Roldán, N.; Pizarro, D.; Verdugo, M.; Salinas-Parra, N.; Quiroz, W.; Reyes-Martinez, C.; Figueroa, S.; Quiroz, C.; Gonzalez, A. A. Antimony (III) Induces Fibroblast-like Phenotype, Profibrotic Factors and Reactive Oxygen Species in Mouse Renal Cells. Environ. Chem. 2019, 17, 182–190. 10.1071/EN19156
  • Canto, N.; Mercado, L.; Quiroz, W. Reactivity of Antimony (V) and Its Effect on the Pro-Inflammatory Response in the RAW 264.7 Monocyte/Macrophage Cell Line. Environ. Chem. 2022, 17, 173–181. 10.1071/EN19173
  • Shi, S. J.; Wu, Q. H.; Zhu, Y. M.; Fan, Z. L.; Rensing, C.; Liu, H.; Feng, R. W. Risk Assessment of Using Phosphate and Calcium Fertilisers for Continuously Flooded Rice Cultivation in a Soil co-Contaminated with Cadmium and Antimony. Crop Past. Sci. 2022, 73, 585–598. doi:10.1071/cp21240.
  • Shotyk, W.; Krachler, M.; Chen, B. Contamination of Canadian and European Bottled Waters with Antimony from PET Containers. J. Environ. Monit. 2006, 8, 288–292. doi:10.1039/b517844b.
  • Shotyk, W.; Krachler, M. Contamination of Bottled Waters with Antimony Leaching from Polyethylene Terephthalate (PET) Increases upon Storage. Environ. Sci. Technol. 2007, 41, 1560–1563. doi:10.1021/es061511+.
  • Mihucz, V. G.; Zaray, G. Occurrence of Antimony and Phthalate Esters in Polyethylene Terephthalate Bottled Drinking Water. Appl. Spectrosc. Rev. 2016, 51, 183–209. doi:10.1080/05704928.2015.1105243.
  • Fujiwara, F.; Rebagliati, R. J.; Marrero, J.; Gomez, D.; Smichowski, P. Antimony as a Traffic-Related Element in Size-Fractionated Road Dust Samples Collected in Buenos Aires. Microchem. J. 2011, 97, 62–67. doi:10.1016/j.microc.2010.05.006.
  • Filella, M. Antimony and PET Bottles: Checking Facts. Chemosphere 2020, 261, 127732. 10.1016/j.chemosphere.2020.127732
  • Schildroth, S.; Osborne, G.; Smith, A. R.; Yip, C.; Collins, C.; Smith, M. T.; Sandy, M. S.; Zhang, L. P. Occupational Exposure to Antimony Trioxide: A Risk Assessment. Occup. Environ. Med. 2021, 78, 413–418. doi:10.1136/oemed-2020-106980.
  • Ferreira, S. L. C.; Dos Anjos, J. P.; Felix, C. S. A.; Da Silva, M. M.; Palacio, E.; Cerda, V. Speciation Analysis of Antimony in Environmental Samples Employing Atomic Fluorescence Spectrometry – Review. Trends Anal. Chem. 2019, 110, 335–343. doi:10.1016/j.trac.2018.11.017.
  • Smichowski, P.; Gómez, D. R. An Overview of Natural and Anthropogenic Sources of Ultrafine Airborne Particles: Analytical Determination to Assess the Multielemental Profiles. Appl. Spectrosc. Rev. 2023, 58, 1–27. 10.1080/05704928.2023.2166522
  • Miravet, R.; Hernandez-Nataren, E.; Sahuquillo, A.; Rubio, R.; Lopez-Sanchez, J. F. Speciation of Antimony in Environmental Matrices by Coupled Techniques. Trends Anal. Chem. 2010, 29, 28–39. doi:10.1016/j.trac.2009.10.006.
  • Silva, M. M.; Portugal, L. A.; Serra, A. M.; Ferrer, L.; Cerda, V.; Ferreira, S. L. C. On Line Automated System for the Determination of Sb(V), Sb(III), Thrimethyl Antimony(v) and Total Antimony in Soil Employing Multisyringe Flow Injection Analysis Coupled to HG-AFS. Talanta 2017, 165, 502–507. doi:10.1016/j.talanta.2016.12.022.
  • Zheng, J. W.; Rahim, M. A.; Tang, J. B.; Allioux, F. M.; Kalantar-Zadeh, K. Post-Transition Metal Electrodes for Sensing Heavy Metal Ions by Stripping Voltammetry. Adv. Mater. Technol. 2022, 7, 2100760. doi:10.1002/admt.202100760.
  • Ren, Y. F.; Zheng, W. T.; Li, S.; Liu, Y. B. Atomic H*-Mediated Electrochemical Removal of Low Concentration Antimonite and Recovery of Antimony from Water. J. Hazard. Mater. 2023, 445, 130520. doi:10.1016/j.jhazmat.2022.130520.
  • Gourtsoyiannis, N.; Grammatikakis, J.; Prassopoulos, P. Role of Conventional Radiology in the Diagnosis and Staging of Gastrointestinal Tract Neoplasms. Semin. Surg. Oncol. 2001, 20, 91–108. doi:10.1002/ssu.1023.
  • Maglinte, D. D.; Kelvin, F. M.; O'Connor, K.; Lappas, J. C.; Chernish, S. M. Current Status of Small Bowel Radiography. Abdom. Imaging. 1996, 21, 247–257. doi:10.1007/s002619900058.
  • Butcher, D. J. Innovations and Developments in Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Appl. Spectrosc. Rev. 2023, 58, 65–82. doi:10.1080/05704928.2021.1919896.
  • Acar, O. The Use of Chemical Modifiers in Electrothermal Atomic Absorption Spectrometry. Appl. Spectrosc. Rev. 2022, 57, 1–15. 10.1080/05704928.2022.2147537
  • Halko, R.; Tuček, J.; Chovancová, K.; Andruch, V. Some Green Approaches in Atomic Absorption Spectrometry. The Last 10 Years. Appl. Spectrosc. Rev. 2022, 57, 1–48. 10.1080/05704928.2022.2148685
  • Welz, B.; Sperling, M. Atomic Absorption Spectrometry. John Wiley & Sons; 2008.
  • Niendorf, H. P.; Dinger, J. C.; Haustein, J.; Cornelius, I.; Alhassan, A.; Clauss, W. Tolerance Data of gd-Dtpa - a Review. Eur. J. Radiol. 1991, 13, 15–20. doi:10.1016/0720-048x(91)90049-2.
  • Kulaksız, S.; Bau, M. Anthropogenic Gadolinium as a Microcontaminant in Tap Water Used as Drinking Water in Urban Areas and Megacities. Appl. Geochem. 2011, 26, 1877–1885. 10.1016/j.apgeochem.2011.06.011
  • Lawrence, M. G. Detection of Anthropogenic Gadolinium in the Brisbane River Plume in Moreton Bay, Queensland, Australia. Mar. Pollut. Bull. 2010, 60, 1113–1116. 10.1016/j.marpolbul.2010.03.027
  • Hatje, V.; Bruland, K. W.; Flegal, A. R. Determination of Rare Earth Elements after Pre-Concentration Using NOBIAS-Chelate PA-1® Resin: Method Development and Application in the San Francisco Bay Plume. Mar. Chem. 2014, 160, 34–41. 10.1016/j.marchem.2014.01.006
  • Hatje, V.; Bruland, K. W.; Flegal, A. R. Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environ. Sci. Technol. 2016, 50, 4159–4168. 10.1021/acs.est.5b04322
  • Johannesson, K. H.; Palmore, C. D.; Fackrell, J.; Prouty, N. G.; Swarzenski, P. W.; Chevis, D. A.; Telfeyan, K.; White, C. D.; Burdige, D. J. Rare Earth Element Behavior during Groundwater–Seawater Mixing along the Kona Coast of Hawaii. Geochim. Cosmochim. Acta 2017, 198, 229–258. 10.1016/j.gca.2016.11.009
  • Souza, L. A.; Pedreira, R. M.; Miró, M.; Hatje, V. Evidence of High Bioaccessibility of Gadolinium-Contrast Agents in Natural Waters after Human Oral Uptake. Sci. Total Environ. 2021, 793, 148506. 10.1016/j.scitotenv.2021.148506
  • Telgmann, L.; Sperling, M.; Karst, U. Determination of Gadolinium-Based MRI Contrast Agents in Biological and Environmental Samples: A Review. Anal. Chim. Acta. 2013, 764, 1–16. 10.1016/j.aca.2012.12.007
  • Allen, S.; Allen, D.; Karbalaei, S.; Maselli, V.; Walker, T. R. Micro (Nano) Plastics Sources, Fate, and Effects: What we Know after Ten Years of Research. J. Hazard. Mater. Adv. 2022, 6, 100057. 10.1016/j.hazadv.2022.100057
  • Samadi, A.; Kim, Y.; Lee, S. A.; Kim, Y. J.; Esterhuizen, M. Review on the Ecotoxicological Impacts of Plastic Pollution on the Freshwater Invertebrate Daphnia. Environ. Toxicol. 2022, 37, 2615–2638. 10.1002/tox.23623
  • Sharifinia, M.; Bahmanbeigloo, Z. A.; Keshavarzifard, M.; Khanjani, M. H.; Lyons, B. P. Microplastic Pollution as a Grand Challenge in Marine Research: A Closer Look at Their Adverse Impacts on the Immune and Reproductive Systems. Ecotoxicol. Environ. Saf. 2020, 204, 111109. 10.1016/j.ecoenv.2020.111109
  • Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C. R. Microplastics in Sediments: A Review of Techniques, Occurrence and Effects. Mar. Environ. Res. 2015, 111, 5–17. 10.1016/j.marenvres.2015.06.007
  • Elkhatib, D.; Oyanedel-Craver, V. A Critical Review of Extraction and Identification Methods of Microplastics in Wastewater and Drinking Water. Environ. Sci. Technol. 2020, 54, 7037–7049. 10.1021/acs.est.9b06672
  • Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. 10.3389/ftox.2021.636640
  • Bouzid, N.; Anquetil, C.; Dris, R.; Gasperi, J.; Tassin, B.; Derenne, S. Quantification of Microplastics by Pyrolysis Coupled with Gas Chromatography and Mass Spectrometry in Sediments: Challenges and Implications. Microplastics 2022, 1, 229–239. 10.3390/microplastics1020016
  • Renner, G.; Schmidt, T. C.; Schram, J. Analytical Methodologies for Monitoring Micro (Nano) Plastics: Which Are Fit for Purpose? Curr. Opin. Env. Sci. Health 2018, 1, 55–61. 10.1016/j.coesh.2017.11.001
  • Renner, G.; Schmidt, T. C.; Schram, J. R. A New Chemometric Approach for Automatic Identification of Microplastics from Environmental Compartments Based on FT-IR Spectroscopy. Anal. Chem. 2017, 89, 12045–12053. 10.1021/acs.analchem.7b02472
  • Kedzierski, M.; Falcou-Préfol, M.; Kerros, M. E.; Henry, M.; Pedrotti, M. L.; Bruzaud, S. A Machine Learning Algorithm for High Throughput Identification of FTIR Spectra: Application on Microplastics Collected in the Mediterranean Sea. Chemosphere 2019, 234, 242–251. 10.1016/j.chemosphere.2019.05.113
  • Morgado, V.; Gomes, L.; Da Silva, R. J. B.; Palma, C. Validated Spreadsheet for the Identification of PE, PET, PP and PS Microplastics by micro-ATR-FTIR Spectra with Known Uncertainty. Talanta 2021, 234, 122624. 10.1016/j.talanta.2021.122624
  • Manimekalai, B.; Arulmozhi, R.; Krishnan, M. A.; Sivanesan, S. Consequence of COVID-19 Occurrences in Wastewater with Promising Recognition and Healing Technologies: A Review. Environ. Prog. Sust. 2023, 42, e13937. doi:10.1002/ep.13937.
  • Lahrich, S.; Laghrib, F.; Farahi, A.; Bakasse, M.; Saqrane, S.; El Mhammedi, M. A. Review on the Contamination of Wastewater by COVID-19 Virus: Impact and Treatment. Sci. Total Environ. 2021, 751, 142325. doi:10.1016/j.scitotenv.2020.142325.
  • Mandal, P.; Gupta, A. K.; Dubey, B. K. A Review on Presence, Survival, Disinfection/Removal Methods of Coronavirus in Wastewater and Progress of Wastewater-Based Epidemiology. J. Environ. Chem. Eng. 2020, 8, 104317. doi:10.1016/j.jece.2020.104317.
  • Gent, L.; Paul, R. The Detection of New Psychoactive Substances in Wastewater. A Comprehensive Review of Analytical Approaches and Global Trends. Sci. Total Environ. 2021, 776, 146028. 10.1016/j.scitotenv.2021.146028
  • Bade, R.; Abdelaziz, A.; Nguyen, L.; Pandopulos, A. J.; White, J. M.; Gerber, C. Determination of 21 Synthetic Cathinones, Phenethylamines, Amphetamines and Opioids in Influent Wastewater Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. Talanta 2020, 208, 120479. 10.1016/j.talanta.2019.120479
  • Turker, S. D.; Dunn, W. B.; Wilkie, J. MALDI-MS of Drugs: Profiling, Imaging, and Steps towards Quantitative Analysis. Appl. Spectrosc. Rev. 2017, 52, 73–99. 10.1080/05704928.2016.1207659
  • Mussa, Z. H.; Al-Qaim, F. F. Quantification of 10,11-Dihydro-10-Hydroxy Carbamazepine and 10,11-Epoxycarbamazepine as the Main by-Products in the Electrochemical Degradation of Carbamazepine. Environ. Sci. Pollut. Res. Int. 2022, 29, 62447–62457. doi:10.1007/s11356-022-20091-7.
  • Campos-Manas, M. C.; Ferrer, I.; Thurman, E. M.; Perez, J. a S.; Aguera, A. Identification of Opioids in Surface and Wastewaters by LC/QTOF-MS Using Retrospective Data Analysis. Sci. Total Environ. 2019, 664, 874–884. doi:10.1016/j.scitotenv.2019.01.389.
  • Khan, E.; Virojnagud, W.; Ratpukdi, T. Use of Biomass Sorbents for Oil Removal from Gas Station Runoff. Chemosphere 2004, 57, 681–689. 10.1016/j.chemosphere.2004.06.028
  • Xiao, H.; Gao, X.; Li, M. Z.; Ma, M.; Zhang, L. Simultaneous Determination of MTBE and BTEX in the Groundwater of Gas Station by Head-space-GC. AMR. 2013, 864, 973–977. 10.4028/www.scientific.net/AMR.864-867.973
  • Domingos, D.; Ferreira Neta, M. D. L. S.; Massa, A. R. C.; Reboucas, M. V.; Teixeira, L. S. UV-Assisted Digestion of Petrochemical Industry Effluents Prior to the Determination of Zn, Cd, Pb and Cu by Differential Pulse Anodic Stripping Voltammetry. J. Braz. Chem. Soc. 2016, 27, 1594–1601.
  • Kuntasal, Ö. O.; Karman, D.; Wang, D.; Tuncel, S. G.; Tuncel, G. Determination of Volatile Organic Compounds in Different Microenvironments by Multibed Adsorption and Short-Path Thermal Desorption Followed by Gas Chromatographic–Mass Spectrometric Analysis. J. Chromatogr. A. 2005, 1099, 43–54. 10.1016/j.chroma.2005.08.093
  • Spinazzè, A.; Borghi, F.; Rovelli, S.; Mihucz, V. G.; Bergmans, B.; Cattaneo, A.; Cavallo, D. M. Combined and Modular Approaches for Multicomponent Monitoring of Indoor Air Pollutants. Appl. Spectrosc. Rev. 2022, 57, 780–816. 10.1080/05704928.2021.1995405
  • Shinohara, N.; Okazaki, Y.; Mizukoshi, A.; Wakamatsu, S. Exposure to Benzene, Toluene, Ethylbenzene, Xylene, Formaldehyde, and Acetaldehyde in and around Gas Stations in Japan. Chemosphere 2019, 222, 923–931. 10.1016/j.chemosphere.2019.01.166
  • Wu, B.-Z.; Hsieh, L.-L.; Chiu, K.-H.; Sree, U.; Lo, J.-G. Determination and Impact of Volatile Organics Emitted during Rush Hours in the Ambient Air around Gasoline Stations. J. Air Waste Manag. Assoc. 2006, 56, 1342–1348. 10.1080/10473289.2006.10464589
  • Wang, Y.; Li, G.; Wang, H.; Zhou, M.; Lin, L. Dynamic Spectrum for Noninvasive Blood Component Analysis and Its Advances. Appl. Spectrosc. Rev. 2019, 54, 736–757. 10.1080/05704928.2018.1509344
  • Iyanda, A. A. Serum Heavy Metal Levels in Teenagers Currently or Formerly Employed as Gas Station Attendants. Bangladesh J. Med. Sci. 2018, 17, 224–229. 10.3329/bjms.v17i2.35875
  • De Souza, V. S.; Sena Gomes Teixeira, L.; Sthefane, J.; Lima, S. O.; Ferreira Da Mata Cerqueira, U. M.; Cordeiro De Oliveira, O. M.; Queiroz, A. F. D. S.; Almeida Bezerra, M. Analytical Strategies for Spectrometric Determination of Vanadium in Samples of Interest in the Petroleum Industry. Appl. Spectrosc. Rev. 2020, 55, 128–157. 10.1080/05704928.2018.1542600
  • De Jesus Ferreira, V.; Almeida, J. S.; Lemos, V. A.; De Oliveira, O. M.; Garcia, K. S.; Teixeira, L. S. Determination of Cu, Ni, Mn, and Pb in Diesel Oil Samples Using Reversed-Phase Vortex-Assisted Liquid-Liquid Microextraction Associated with Energy Dispersive X-Ray Fluorescence Spectrometry. Talanta 2021, 222, 121514. 10.1016/j.talanta.2020.121514
  • Anjos, S. L.; Almeida, J. S.; Teixeira, L. S.; Da Silva, A. C. M.; Santos, A. P.; Queiroz, A. F.; Ferreira, S. L.; Mattedi, S. Determination of Cu, Ni, Mn and Zn in Diesel Oil Samples Using Energy Dispersive X-Ray fluorescence Spectrometry after Solid Phase Extraction Using Sisal Fiber. Talanta 2021, 225, 121910. 10.1016/j.talanta.2020.121910
  • Meira, L. A.; Almeida, J. S.; Dias, F. D. S.; Teixeira, L. S. Combination of Extraction Induced by Microemulsion-Breaking and Pre-Concentration Using Magnetic Nanoparticles for Multi-Element Determination of Cd, Cr, Cu and Pb in Gasoline Samples Using Energy Dispersive X-Ray Fluorescence Spectrometry. Microchem. J. 2019, 147, 660–665. 10.1016/j.microc.2019.03.068
  • Keiloun, M.; Yang, F.; Chau, Y. K.; Gagnon, F.; Bouyahi, B.; Rivard, M.; Kennedy, G.; Normandin, L.; Zayed, J. Exposure of Gas Station Attendants to Methylcyclopentadienyl Manganese Tricarbonyl (MMT) Used in Gasoline. Water Air Soil Pollut. 2002, 141, 155–163. 10.1023/A:1021350613469
  • Angeyo, H.; Gari, S. Direct Rapid Quality Assurance Analysis of Complex Matrix Materials: A Chemometrics Enabled Energy Dispersive X-Ray Fluorescence and Scattering Spectrometry Application. Appl. Radiat. Isot. 2022, 186, 110274. 10.1016/j.apradiso.2022.110274
  • Zuma, M. C.; Lakkakula, J.; Mketo, N. Recent Trends in Sample Preparation Methods and Plasma-Based Spectrometric Techniques for the Determination of Rare Earth Elements in Geological and Fossil Fuel Samples. Appl. Spectrosc. Rev. 2022, 57, 353–377. 10.1080/05704928.2020.1858093
  • Lepri, F. G.; Chaves, E. S.; Vieira, M. A.; Ribeiro, A. S.; Curtius, A. J.; Deoliveira, L. C.; Decampos, R. C. Determination of Trace Elements in Vegetable Oils and Biodiesel by Atomic Spectrometric Techniques—a Review. Appl. Spectrosc. Rev. 2011, 46, 175–206. 10.1080/05704928.2010.529628
  • Morel, O. J. X.; Christie, R. M. Current Trends in the Chemistry of Permanent Hair Dyeing. Chem. Rev. 2011, 111, 2537–2561. doi:10.1021/cr1000145.
  • Lynch, B. S.; Delzell, E. S.; Bechtel, D. H. Toxicology Review and Risk Assessment of Resorcinol: Thyroid Effects. Regul. Toxicol. Pharmacol. 2002, 36, 198–210. doi:10.1006/rtph.2002.1585.
  • Guaratini, C. C. I.; Zanoni, M. V. B. Textile Dyes. Quím. Nova 2000, 23, 71–78. doi:10.1590/s0100-40422000000100013.
  • Zanoni, T. B.; Hudari, F.; Munnia, A.; Peluso, M.; Godschalk, R. W.; Zanoni, M. V. B.; Den Hartog, G. J. M.; Bast, A.; Barros, S. B. M.; Maria-Engler, S. S.; et al. The Oxidation of p-Phenylenediamine, an Ingredient Used for Permanent Hair Dyeing Purposes, Leads to the Formation of Hydroxyl Radicals: Oxidative Stress and DNA Damage in Human Immortalized Keratinocytes. Toxicol. Lett. 2015, 239, 194–204. doi:10.1016/j.toxlet.2015.09.026.
  • Lewington, A. J. P.; Cerda, J.; Mehta, R. L. Raising Awareness of Acute Kidney Injury: A Global Perspective of a Silent Killer. Kidney Int. 2013, 84, 457–467. doi:10.1038/ki.2013.153.
  • He, L.; Michailidou, F.; Gahlon, H. L.; Zeng, W. B. Hair Dye Ingredients and Potential Health Risks from Exposure to Hair Dyeing. Chem. Res. Toxicol. 2022, 35, 901–915. doi:10.1021/acs.chemrestox.1c00427.
  • Gera, R.; Tayeh, S.; Chehade, H. E.; Mokbel, K. Does Transdermal Testosterone Increase the Risk of Developing Breast Cancer? A Systematic Review. Anticancer Res. 2018, 38, 6615–6620. doi:10.21873/anticanres.13028.
  • Franco, J. H.; Da Silva, B. F.; Zanoni, M. V. B. Assessment of Semi-Permanent Hair Dyes in Wash Water from Beauty Salons by Liquid Chromatography-Tandem Mass Spectrometry-Selected Reaction Monitoring (LC-MS/MS-SRM). Anal. Methods 2020, 12, 5415–5423. doi:10.1039/d0ay01395a.
  • Dyes, A.; Orange, D.; Dyes, A.; Dyes, C.; Brighteners, F. Method 8321A Solvent Extractable Nonvolatile Compounds by High Performance Liquid Chromatography/Thermospray/Mass Spectrometry (HPLC/TS/MS) or Ultraviolet (UV) Detection. 1996.
  • Bessegato, G. G.; Brugnera, M. F.; Zanoni, M. V. B. Electroanalytical Sensing of Dyes and Colorants. Curr. Opin. Electrochem. 2019, 16, 134–142. 10.1016/j.coelec.2019.05.008
  • Carneiro, P. A.; Umbuzeiro, G. A.; Oliveira, D. P.; Zanoni, M. V. B. Assessment of Water Contamination Caused by a Mutagenic Textile Effluent/Dyehouse Effluent Bearing Disperse Dyes. J. Hazard. Mater. 2010, 174, 694–699. doi:10.1016/j.jhazmat.2009.09.106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.