256
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent advances of sample separation and preconcentration techniques for analytical atomic spectrometry

, , , & ORCID Icon

References

  • Khan, W. A.; Arain, M. B.; Yamini, Y.; Shah, N.; Kazi, T. G.; Pedersen-Bjergaard, S.; Tajik, M. Hollow Fiber-Based Liquid Phase Microextraction Followed by Analytical Instrumental Techniques for Quantitative Analysis of Heavy Metal Ions and Pharmaceuticals. J. Pharm. Anal. 2020, 10, 109–122. DOI: 10.1016/j.jpha.2019.12.003.
  • Chen, X.; Hu, K. L.; Zhou, J. R.; Yuan, X.; Zhang, M.; Huang, K.; Pan, Y. Critical Evaluation of the Application of Filter-Assisted Separation in Analytical Atomic Spectrometry. Appl. Spectrosc. Rev. DOI: 10.1080/05704928.2022.2134145.
  • Ramos, L. Critical Overview of Selected Contemporary Sample Preparation Techniques. J. Chromatogr. A. 2012, 1221, 84–98. DOI: 10.1016/j.chroma.2011.11.011.
  • Halko, R.; Tuček, J.; Chovancová, K.; Andruch, V. Some Green Approaches in Atomic Absorption Spectrometry. The Last 10 Years. Appl. Spectrosc. Rev. DOI: 10.1080/05704928.2022.2148685.
  • Hu, J.; Chen, H.; Hou, X.; Jiang, X. Cobalt and Copper Ions Synergistically Enhanced Photochemical Vapor Generation of Molybdenum: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2019, 91, 5938–5944. DOI: 10.1021/acs.analchem.9b00337.
  • Yang, Q.; Chen, H.; Hu, J.; Huang, K.; Hou, X. Simultaneous Detection of Ruthenium and Osmium by Photochemical Vapor Generation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2022, 94, 593–599. DOI: 10.1021/acs.analchem.1c03357.
  • Vyhnanovský, J.; Sturgeon, R.; Musil, S. Cadmium Assisted Photochemical Vapor Generation of Tungsten for Detection by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019, 91, 13306–13312. DOI: 10.1021/acs.analchem.9b04241.
  • Zou, W.; Li, C.; Hu, J.; Hou, X. Selective Determination of Cr(VI) and Non-Chromatographic Speciation Analysis of Inorganic Chromium by Chemical Vapor Generation-Inductively Coupled Plasma Mass Spectrometry. Talanta. 2020, 218, 121128. DOI: 10.1016/j.talanta.2020.121128.
  • Zhen, Y.; Chen, H.; Zhang, M.; Hu, J.; Hou, X. Cadmium and Cobalt Ions Enhanced-Photochemical Vapor Generation for Determination of Trace Rhenium by ICP-MS. Appl. Spectrosc. Rev. 2022, 57, 318–337. DOI: 10.1080/05704928.2021.1878368.
  • Wang, H.; Liu, X.; Nan, K.; Chen, B.; He, M.; Hu, B. Sample Pre-Treatment Techniques for Use with ICP-MS Hyphenated Techniques for Elemental Speciation in Biological Samples. J. Anal. At. Spectrom. 2017, 32, 58–77. DOI: 10.1039/C6JA00077K.
  • Xu, F. J.; Hu, J.; Zhang, J. Y.; Hou, X. D.; Jiang, X. M. Nanomaterials in Speciation Analysis of Mercury, Arsenic, Selenium, and Chromium by Analytical Atomic/Molecular Spectrometry. Appl. Spectrosc. Rev. 2018, 53, 333–348. DOI: 10.1080/05704928.2017.1323310.
  • Marcinkowska, M.; Barałkiewicz, D. Multielemental Speciation Analysis by Advanced Hyphenated Technique – HPLC/ICP-MS: A Review. Talanta. 2016, 161, 177–204. DOI: 10.1016/j.talanta.2016.08.034.
  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Miniaturized Preconcentration Methods Based on Liquid-Liquid Extraction and Their Application in Inorganic Ultratrace Analysis and Speciation: A Review. Spectrochim. Acta. B 2009, 64, 1–15. DOI: 10.1016/j.sab.2008.10.042.
  • Chen, S. Z.; Yan, J. T.; Wang, C. L.; Zhang, C. H.; Lu, D. B. Determination of Tl(III) and Tl(I) in Food Samples with Two-Step Direct Immersion Single-Drop Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. J. Food. Compos. Anal. 2023, 117, 104967. DOI: 10.1016/j.jfca.2022.104967.
  • García-Figueroa, A.; Lavilla, I.; Bendicho, C. Speciation of CdTe Quantum Dots and Te(IV) following Oxidative Degradation Induced by Iodide and Headspace Single-Drop Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta. B. 2019, 158, 105631. DOI: 10.1016/j.sab.2019.06.001.
  • Werner, J.; Grześkowiak, T.; Zgoła-Grześkowiak, A.; Stanisz, E. Recent Trends in Microextraction Techniques Used in Determination of Arsenic Species. Trends Anal. Chem. 2018, 105, 121–136. DOI: 10.1016/j.trac.2018.05.006.
  • Stanisz, E.; Werner, J.; Zgoła-Grześkowiak, A. Liquid-Phase Microextraction Techniques Based on Ionic Liquids for Preconcentration and Determination of Metals. Trends Anal. Chem. 2014, 61, 54–66. DOI: 10.1016/j.trac.2014.06.008.
  • Fiorentini, E. F.; Canizo, B. V.; Wuilloud, R. G. Determination of as in Honey Samples by Magnetic Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction and Electrothermal Atomic Absorption Spectrometry. Talanta. 2019, 198, 146–153. DOI: 10.1016/j.talanta.2019.01.091.
  • Tuzen, M.; Elik, A.; Altunay, N. Ultrasound-Assisted Supramolecular Solvent Dispersive Liquid-Liquid Microextraction for Preconcentration and Determination of Cr(VI) in Waters and Total Chromium in Beverages and Vegetables. J. Mol. Liq. 2021, 329, 115556. DOI: 10.1016/j.molliq.2021.115556.
  • Aguirre, M. A.; Baile, P.; Vidal, L.; Canals, A. Metal Applications of Liquid-Phase Microextraction. Trends Anal. Chem. 2019, 112, 241–247. DOI: 10.1016/j.trac.2018.11.032.
  • Thongsaw, A.; Sananmuang, R.; Udnan, Y.; Ross, G. M.; Chaiyasith, W. C. Speciation of Mercury in Water and Freshwater Fish Samples Using Two-Step Hollow Fiber Liquid Phase Microextraction with Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta. B. 2019, 152, 102–108. DOI: 10.1016/j.sab.2018.12.012.
  • Majumder, S.; Marguí, E.; Roman-Ross, G.; Chatterjee, D.; Hidalgo, M. Hollow Fiber Liquid Phase Microextraction Combined with Total Reflection X-Ray Fluorescence Spectrometry for the Determination of Trace Level Inorganic Arsenic Species in Waters. Talanta. 2020, 217, 121005. DOI: 10.1016/j.talanta.2020.121005.
  • Hagarová, I.; Nemček, L. Reliable Quantification of Ultratrace Selenium in Food, Beverages, and Water Samples by Cloud Point Extraction and Spectrometric Analysis. Nutrients. 2022, 14, 3530. DOI: 10.3390/nu14173530.
  • Mortada, W. I. Recent Developments and Applications of Cloud Point Extraction: A Critical Review. Microchem. J. 2020, 157, 105055. DOI: 10.1016/j.microc.2020.105055.
  • Snigur, D.; Dubovyi, V.; Arabadji, M.; Bevziuk, K.; Muratov, V.; Barbalat, D.; Zhukovetska, O. A Novel Fast Room-Temperature Cloud Point Extraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy for Copper(II) Traces Determination. Int. J. Environ. Anal. Chem. DOI: 10.1080/03067319.2022.2118593.
  • Mandal, S.; Lahiri, S. A Review on Extraction, Preconcentration and Speciation of Metal Ions by Sustainable Cloud Point Extraction. Microchem. J. 2022, 175, 107150. DOI: 10.1016/j.microc.2021.107150.
  • Thongsaw, A.; Sananmuang, R.; Udnan, Y.; Ross, G. M.; Chaiyasith, W. C. Dual-Cloud Point Extraction for Speciation of Mercury in Water and Fish Samples by Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta. B. 2019, 160, 105685. DOI: 10.1016/j.sab.2019.105685.
  • Jia, W. P.; Hu, Y.; Li, F.; Han, D. M. Interference-Free Determination of Pb in Complicated Matrices by Displacement-Cloud Point Extraction Coupled with Thermospray Flame Furnace Atomic Absorption Spectrometry. At. Spectrosc. 2015, 36, 96–101. DOI: 10.46770/as.2015.02.005.
  • Camel, V. Solid Phase Extraction of Trace Elements. Spectrochim. Acta. B. 2003, 58, 1177–1233. DOI: 10.1016/S0584-8547(03)00072-7.
  • Yu, H. M.; Li, C. H.; Tian, Y. F.; Jiang, X. M. Recent Developments in Determination and Speciation of Arsenic in Environmental and Biological Samples by Atomic Spectrometry. Microchem. J. 2020, 152, 104312. DOI: 10.1016/j.microc.2019.104312.
  • Deng, D. Y.; Zheng, C. B.; Hou, X. D.; Wu, L. Application of Preconcentration and Separation Techniques in Atomic Fluorescence Spectrometry. Appl. Spectrosc. Rev. 2015, 50, 678–705. DOI: 10.1080/05704928.2015.1065498.
  • Zhang, L. F.; Liu, X.; Xia, W.; Zhang, Y. L.; Zhang, W. Q. Simultaneous Determination of Seven Metal Ions in Water Samples by Solid-Phase Extraction on Polyacrylonitrile Activated Carbon. Int. J. Environ. Anal. Chem. 2014, 94, 728–741. DOI: 10.1080/03067319.2014.891105.
  • Kagaya, S.; Ikeda, R.; Kajiwara, T.; Gemmei-Ide, M.; Inoue, Y. Phosphomethylated Polyethyleneimine-Immobilized Chelating Resin: Role of Phosphomethylation Rate on Solid-Phase Extraction of Trace Elements. Anal. Sci. 2019, 35, 413–419. DOI: 10.2116/analsci.18P462.
  • Hassan, J.; Zari, N.; Tabar-Heydar, K. Determination of Rare Earth Elements in Environmental Samples by Solid Phase Extraction ICP OES. J. Anal. Chem. 2016, 71, 365–371. DOI: 10.1134/s1061934816020052.
  • Garcia-Mesa, J. C.; Leal, P. M.; Guerrero, M. M. L.; Alonso, E. I. V. Simultaneous Determination of Noble Metals, Sb and Hg by Magnetic Solid Phase Extraction on Line ICP OES Based on a New Functionalized Magnetic Graphene Oxide. Microchem. J. 2019, 150, 104141. DOI: 10.1016/j.microc.2019.104141.
  • Herrero-Latorre, C.; Barciela-Garcia, J.; Garcia-Martin, S.; Pena-Crecente, R. M. Graphene and Carbon Nanotubes as Solid Phase Extraction Sorbents for the Speciation of Chromium: A Review. Anal. Chim. Acta. 2018, 1002, 1–17. DOI: 10.1016/j.aca.2017.11.042.
  • Eftekhari, M.; Gheibi, M.; Akrami, M.; Iranzad, F. Solid-Phase Extraction of Ultra-Trace Levels of Lead Using Tannic Acid-Coated Graphene Oxide as an Efficient Adsorbent Followed by Electrothermal Atomic Absorption Spectrometry; Response Surface Methodology-Central Composite Design. New J. Chem. 2018, 42, 1159–1168. DOI: 10.1039/c7nj03226a.
  • Volynkin, S. S.; Demakov, P. A.; Shuvaeva, O. V.; Kovalenko, K. A. Metal-Organic Framework Application for Mercury Speciation Using Solid Phase Extraction Followed by Direct Thermal Release-Electrothermal Atomization Atomic Absorption Spectrophotometric Detection (ETA AAS). Anal. Chim. Acta. 2021, 1177, 338795. DOI: 10.1016/j.aca.2021.338795.
  • E. O.; Bozyigit, G. D.; Buyukpinar, C.; Bakirdere, S. Er, Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit. Rev. Anal. Chem. 2022, 52, 231–249. DOI: 10.1080/10408347.2020.1797465.
  • Imamoglu, M. Novel Determination of Copper(II) in Natural Waters by Solid-Phase Extraction (SPE) Flow-Injection (FI) Flame Atomic Absorption Spectrometry (FAAS). Anal. Lett. 2023, 56, 517–529. DOI: 10.1080/00032719.2022.2092632.
  • Karandish, S.; Chamsaz, M.; Zavar, M. H. A. An Efficient Solid Phase Extraction of Pb2+ Using Tannic Acid-Coated Cerium Oxide Nanoparticles Followed by Electrothermal Atomic Absorption Spectrometry. Sep. Sci. Technol. 2019, 54, 1325–1337. DOI: 10.1080/01496395.2018.1534867.
  • Jamali, A.; Tehrani, A. A.; Shemirani, F.; Morsali, A. Lanthanide Metal-Organic Frameworks as Selective Microporous Materials for Adsorption of Heavy Metal Ions. Dalton Trans. 2016, 45, 9193–9200. DOI: 10.1039/c6dt00782a.
  • Li, Y. K.; Wang, X. Y.; Liu, X.; Yang, T.; Chen, M. L.; Wang, J. H. Ensuring High Selectivity for Preconcentration and Detection of Ultra-Trace Cadmium Using a Phage-Functionalized Metal-Organic Framework. Analyst. 2020, 145, 5280–5288. DOI: 10.1039/d0an00944j.
  • Londonio, A.; Morzan, E.; Smichowski, P. Simultaneous on-Line Preconcentration and Determination of Toxic Elements in Rice and Rice-Based Products by SPE-ICP-MS: Multiple Response Optimization. J. Food. Compos. Anal. 2022, 107, 104388. DOI: 10.1016/j.jfca.2022.104388.
  • Zhang, H. K.; Shao, D. D.; Zheng, L. N.; Wang, Z. Y.; Wang, B.; Feng, W. Y.; Wang, M. Determination of Trace Mercury in Water by on-Line Solid Phase Extraction and Ultraviolet Vapor Generation-ICP-MS. At. Spectrosc. 2019, 40, 37–41. DOI: 10.46770/as.2019.02.001.
  • Ricardo, A. I. C.; Abujaber, F.; Bernardo, F. J. G.; Martin-Doimeadios, R. C. R.; Rios, A. Magnetic Solid Phase Extraction as a Valuable Tool for Elemental Speciation Analysis. Trends Environ. Anal. Chem. 2020, 27, e00097. DOI: 10.1016/j.teac.2020.e00097.
  • Filik, H.; Avan, A. A. Magnetic Nanostructures for Preconcentration, Speciation and Determination of Chromium Ions: A Review. Talanta. 2019, 203, 168–177. DOI: 10.1016/j.talanta.2019.05.061.
  • Morales-Benítez, I.; Montoro-Leal, P.; García-Mesa, J. C.; Verdeja-Galán, J.; Alonso, E. I. V. Magnetic Graphene Oxide as a Valuable Material for the Speciation of Trace Elements. Trends Anal. Chem. 2022, 157, 116777. DOI: 10.1016/j.trac.2022.116777.
  • Zhu, Q.; Zhao, L.; Sheng, D.; Chen, Y.; Hu, X.; Lian, H.; Mao, L.; Cui, X. Speciation Analysis of Chromium by Carboxylic Group Functionalized Mesoporous Silica with Inductively Coupled Plasma Mass Spectrometry. Talanta. 2019, 195, 173–180. DOI: 10.1016/j.talanta.2018.11.043.
  • Dakova, I.; Vasileva, P.; Karadjova, I. Cr(III) Ion-Imprinted Hydrogel Membrane for Chromium Speciation Analysis in Water Samples. Gels. 2022, 8, 757. DOI: 10.3390/gels8110757.
  • Chen, Z. N.; Chen, B. B.; He, M.; Hu, B. Magnetic Metal-Organic Framework Composites for Dual-Column Solid-Phase Microextraction Combined with ICP-MS for Speciation of Trace Levels of Arsenic. Microchim. Acta. 2019, 187, 48. DOI: 10.1007/s00604-019-4055-8.
  • Musteata, F. M.; Pawliszyn, J. Bioanalytical Applications of Solid-Phase Microextraction. Trends Anal. Chem. 2007, 26, 36–45. DOI: 10.1016/j.trac.2006.11.003.
  • Carrasco, L.; Diez, S.; Bayona, J. M. Simultaneous Determination of Methyl- and Ethyl-Mercury by Solid-Phase Microextraction Followed by Gas Chromatography Atomic Fluorescence Detection. J. Chromatogr. A. 2009, 1216, 8828–8834. DOI: 10.1016/j.chroma.2009.10.043.
  • Kapsimali, D. C.; Zachariadis, G. A. Comparison of Tetraethylborate and Tetraphenylborate for Selenite Determination in Human Urine by Gas Chromatography Mass Spectrometry, after Headspace Solid Phase Microextraction. Talanta. 2010, 80, 1311–1317. DOI: 10.1016/j.talanta.2009.09.022.
  • Campillo, N.; Vinas, P.; Penalver, R.; Cacho, J. I.; Hernandez-Cordoba, M. Solid-Phase Microextraction Followed by Gas Chromatography for the Speciation of Organotin Compounds in Honey and Wine Samples: A Comparison of Atomic Emission and Mass Spectrometry Detectors. J. Food Compos. Anal. 2012, 25, 66–73. DOI: 10.1016/j.jfca.2011.08.001.
  • Lin, Y.; Yang, Y.; Li, Y. X.; Yang, L.; Hou, X. D.; Feng, X. B.; Zheng, C. B. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry. Environ. Sci. Technol. 2016, 50, 2468–2476. DOI: 10.1021/acs.est.5b04328.
  • Gajdosechova, Z.; Pagliano, E.; Zborowski, A.; Mester, Z. Headspace in-Tube Microextraction and GC-ICP-MS Determination of Mercury Species in Petroleum Hydrocarbons. Energy Fuels. 2018, 32, 10493–10501. DOI: 10.1021/acs.energyfuels.8b02201.
  • Hu, J.; Pagliano, E.; Hou, X.; Zheng, C.; Yang, L.; Mester, Z. Sub-Ppt Determination of Butyltins, Methylmercury and Inorganic Mercury in Natural Waters by Dynamic Headspace In-Tube Extraction and GC-ICPMS Detection. J. Anal. At. Spectrom. 2017, 32, 2447–2454. DOI: 10.1039/C7JA00296C.
  • Yang, Y.; Tan, Q.; Lin, Y.; Tian, Y.; Wu, L.; Hou, X.; Zheng, C. Point Discharge Optical Emission Spectrometer as a Gas Chromatography (GC) Detector for Speciation Analysis of Mercury in Human Hair. Anal. Chem. 2018, 90, 11996–12003. DOI: 10.1021/acs.analchem.8b02607.
  • Stamna, A.; Anthemidis, A. N. Sequential Injection Solvent Dispersive Micro Solid Phase Extraction (SI-SD-μSPE) Platform Coupled with Atomic Absorption Spectrometry for Lead Determination in Water Samples. Microchem. J. 2020, 156, 104820. DOI: 10.1016/j.microc.2020.104820.
  • Chisvert, A.; Cardenas, S.; Lucena, R. Dispersive Micro-Solid Phase Extraction. Trends Anal. Chem. 2019, 112, 226–233. DOI: 10.1016/j.trac.2018.12.005.
  • Ghorbani, M.; Aghamohammadhassan, M.; Ghorbani, H.; Zabihi, A. Trends in Sorbent Development for Dispersive Micro-Solid Phase Extraction. Microchem. J. 2020, 158, 105250. DOI: 10.1016/j.microc.2020.105250.
  • Montoro-Leal, P.; Garcia-Mesa, J. C.; Cordero, M. T. S.; Guerrero, M. M. L.; Alonso, E. V. Magnetic Dispersive Solid Phase Extraction for Simultaneous Enrichment of Cadmium and Lead in Environmental Water Samples. Microchem. J. 2020, 155, 104796. DOI: 10.1016/j.microc.2020.104796.
  • Grijalba, A. C.; Escudero, L. B.; Wuilloud, R. G. Ionic Liquid-Assisted Multiwalled Carbon Nanotube-Dispersive Micro-Solid Phase Extraction for Sensitive Determination of Inorganic as Species in Garlic Samples by Electrothermal Atomic Absorption Spectrometry. Spectrochimica. Acta. B. 2015, 110, 118–123. DOI: 10.1016/j.sab.2015.06.005.
  • Rofouei, M. K.; Jamshidi, S.; Seidi, S.; Saleh, A. A Bucky Gel Consisting of Fe3O4 Nanoparticles, Graphene Oxide and Ionic Liquid as an Efficient Sorbent for Extraction of Heavy Metal Ions from Water Prior to Their Determination by ICP-OES. Microchim. Acta. 2017, 184, 3425–3432. DOI: 10.1007/s00604-017-2370-5.
  • Yang, S.; Jiang, S.; Hu, K.; Wen, X. Investigation of Dispersive Solid-Phase Extraction Combined with Slurry Sampling Thermospray Flame Furnace Atomic Absorption Spectrometry for the Determination of Cadmium. Microchem. J. 2020, 154, 104542. DOI: 10.1016/j.microc.2019.104542.
  • Kazemi, E.; Shabani, A. M. H.; Dadfarnia, S.; Izadi, F. Speciation and Determination of Chromium Ions by Dispersive Micro Solid Phase Extraction Using Magnetic Graphene Oxide Followed by Flame Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2017, 97, 1080–1093. DOI: 10.1080/03067319.2017.1381693.
  • AlKinani, A.; Eftekhari, M.; Gheibi, M. Ligandless Dispersive Solid Phase Extraction of Cobalt Ion Using Magnetic Graphene Oxide as an Adsorbent Followed by Its Determination with Electrothermal Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2021, 101, 17–34. DOI: 10.1080/03067319.2019.1659254.
  • Manousi, N.; Gomez-Gomez, B.; Madrid, Y.; Deliyanni, E. A.; Zachariadis, G. A. Determination of Rare Earth Elements by Inductively Coupled Plasma-Mass Spectrometry after Dispersive Solid Phase Extraction with Novel Oxidized Graphene Oxide and Optimization with Response Surface Methodology and Central Composite Design. Microchem. J. 2020, 152, 104428. DOI: 10.1016/j.microc.2019.104428.
  • Kocot, K.; Leardi, R.; Walczak, B.; Sitko, R. Determination and Speciation of Trace and Ultratrace Selenium Ions by Energy-Dispersive X-Ray Fluorescence Spectrometry Using Graphene as Solid Adsorbent in Dispersive Micro-Solid Phase Extraction. Talanta. 2015, 134, 360–365. DOI: 10.1016/j.talanta.2014.11.036.
  • Pytlakowska, K. Graphene-Based Preconcentration System Prior to Energy Dispersive X-Ray Fluorescence Spectrometric Determination of Co, Ni, and Cu Ions in Wine Samples. Food Anal. Methods. 2016, 9, 2270–2279. DOI: 10.1007/s12161-016-0412-y.
  • Pytlakowska, K.; Malicka, E.; Talik, E.; Gągor, A. Nano-Bismuth Sulfide Based Dispersive Micro-Solid Phase Extraction Combined with Energy Dispersive X-Ray Fluorescence Spectrometry for Determination of Mercury Ions in Waters. J. Anal. At. Spectrom. 2021, 36, 786–795. DOI: 10.1039/d0ja00477d.
  • Ebrar Karlidağ, N.; Toprak, M.; Demirel, R.; Tuğba Zaman, B.; Bakirdere, S. Development of Copper Nanoflowers Based Dispersive Solid-Phase Extraction Method for Cadmium Determination in Shalgam Juice Samples Using Slotted Quartz Tube Atomic Absorption Spectrometry. Food Chem. 2022, 396, 133669. DOI: 10.1016/j.foodchem.2022.133669.
  • Islam, A.; Zaidi, N.; Ahmad, H.; Kumar, S. Functionalized Carbon Nanotubes for Dispersive Solid-Phase Extraction and Atomic Absorption Spectroscopic Determination of Toxic Metals Ions. Int. J. Environ. Sci. Technol. 2019, 16, 707–718. DOI: 10.1007/s13762-018-1700-4.
  • Babaei, A.; Zeeb, M.; Es-Haghi, A. Magnetic Dispersive Solid-Phase Extraction Based on Graphene Oxide/Fe3O4@Polythionine Nanocomposite Followed by Atomic Absorption Spectrometry for Zinc Monitoring in Water, Flour, Celery and Egg. J. Sci. Food Agric. 2018, 98, 3571–3579. DOI: 10.1002/jsfa.8873.
  • Khalesi, S.; Fahimirad, B.; Rajabi, M.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Synthesis and Comparison of Two Different Morphologies of Graphitic Carbon Nitride as Adsorbent for Preconcentration of Heavy Metal Ions by Effervescent Salt-Assisted Dispersive Micro Solid Phase Extraction Method. J. Dispers. Sci. Technol. DOI: 10.1080/01932691.2022.2059507.
  • Shi, M. T.; Yang, X. A.; Zhang, W. B. Magnetic Graphitic Carbon Nitride Nano-Composite for Ultrasound-Assisted Dispersive Micro-Solid-Phase Extraction of Hg(II) Prior to Quantitation by Atomic Fluorescence Spectroscopy. Anal. Chim. Acta. 2019, 1074, 33–42. DOI: 10.1016/j.aca.2019.04.062.
  • Oner, M.; Bodur, S.; Demir, C.; Yazici, E.; Erarpat, S.; Bakirdere, S. An Effective and Rapid Magnetic Nanoparticle Based Dispersive Solid Phase Extraction Method for the Extraction and Preconcentration of Cadmium from Edible Oil Samples before ICP OES Measurement. J. Food. Compos. Anal. 2021, 101, 103978. DOI: 10.1016/j.jfca.2021.103978.
  • Tokay, F.; Günaydin, R.; Bağdat, S. A Novel Vortex Assisted Dispersive Solid Phase Extraction of Some Trace Elements in Essential Oils and Fish Oil. Talanta. 2021, 230, 122312. DOI: 10.1016/j.talanta.2021.122312.
  • Zolfonoun, E.; Yousefi, S. R. Exfoliated Graphitic Carbon Nitride Nanosheets for on-Line Vortex-Assisted Dispersive Micro-Solid Phase Extraction of Indium Prior to Determination by ICP-OES. Int. J. Environ. Anal. Chem. 2022, 102, 4031–4041. DOI: 10.1080/03067319.2020.1779242.
  • Mehdinia, A.; Jebeliyan, M.; Kayyal, T. B.; Jabbari, A. Rattle-Type Fe3O4@SnO2 Core-Shell Nanoparticles for Dispersive Solid-Phase Extraction of Mercury Ions. Microchim. Acta. 2017, 184, 707–713. DOI: 10.1007/s00604-016-2059-1.
  • Rajabi, M.; Arghavani-Beydokhti, S.; Barfi, B.; Asghari, A. Dissolvable Layered Double Hydroxide as an Efficient Nanosorbent for Centrifugeless Air-Agitated Dispersive Solid-Phase Extraction of Potentially Toxic Metal Ions from Bio-Fluid Samples. Anal. Chim. Acta. 2017, 957, 1–9. DOI: 10.1016/j.aca.2016.12.041.
  • Baghaei, P. A. M.; Mogaddam, M. R. A.; Farajzadeh, M. A.; Mohebbi, A.; Sorouraddin, S. M. Application of Deep Eutectic Solvent Functionalized Cobalt Ferrite Nanoparticles in Dispersive Micro Solid Phase Extraction of Some Heavy Metals from Aqueous Samples Prior to ICP-OES. J. Food Compos. Anal. 2023, 117, 105125. DOI: 10.1016/j.jfca.2022.105125.
  • Salimi, M.; Behbahani, M.; Sobhi, H. R.; Ghambarian, M.; Esrafili, A. Trace Measurement of Lead and Cadmium Ions in Wastewater Samples Using a Novel Dithizone-Immobilized Metal-Organic Framework-Based mu-Dispersive Solid-Phase Extraction. Appl. Organomet. Chem. 2020, 34, e5715. DOI: 10.1002/aoc.5715.
  • Amini, A.; Khajeh, M.; Oveisi, A. R.; Daliran, S.; Ghaffari-Moghaddam, M.; Delarami, H. S. A Porous Multifunctional and Magnetic Layered Graphene Oxide/3D Mesoporous MOF Nanocomposite for Rapid Adsorption of Uranium(VI) from Aqueous Solutions. J. Ind. Eng. Chem. 2021, 93, 322–332. DOI: 10.1016/j.jiec.2020.10.008.
  • Jiang, X.; Hu, J.; Zhang, Y.; Zeng, X.; Long, Z. Fast Synthesis of Bimetallic Metal-Organic Frameworks Based on Dielectric Barrier Discharge for Analytical Atomic Spectrometry and Ratiometric Fluorescent Sensing. Microchem. J. 2020, 159, 105417. DOI: 10.1016/j.microc.2020.105417.
  • Shirkhanloo, H.; Ghazaghi, M.; Rashidi, A.; Vahid, A. Arsenic Speciation Based on Amine-Functionalized Bimodal Mesoporous Silica Nanoparticles by Ultrasound Assisted-Dispersive Solid-Liquid Multiple Phase Microextraction. Microchem. J. 2017, 130, 137–146. DOI: 10.1016/j.microc.2016.08.013.
  • Llaver, M.; Casado-Carmona, F. A.; Lucena, R.; Cardenas, S.; Wuilloud, R. G. Ultra-Trace Tellurium Preconcentration and Speciation Analysis in Environmental Samples with a Novel Magnetic Polymeric Ionic Liquid Nanocomposite and Magnetic Dispersive Micro-Solid Phase Extraction with Flow-Injection Hydride Generation Atomic Fluorescence Spectrometry Detection. Spectrochim. Acta. B. 2019, 162, 105705. DOI: 10.1016/j.microc.2016.08.013. 10.1016/j.sab.2019.105705
  • Krawczyk, M.; Stanisz, E. Ultrasound-Assisted Dispersive Micro Solid-Phase Extraction with nano-TiO2 as Adsorbent for the Determination of Mercury Species. Talanta. 2016, 161, 384–391. DOI: 10.1016/j.talanta.2016.08.071.
  • Gouda, A. A.; El Sheikh, R.; El Sayed, H. M.; Khedr, A. M.; Al Ezz, S. A.; Gamil, W.; Hamdy, M. Ultrasound-Assisted Dispersive Microsolid-Phase Extraction for Preconcentration of Trace Cobalt and Nickel in Environmental Samples Prior to Their Determination by Flame Atomic Absorption Spectrometry. J. Appl. Spectrosc. 2022, 89, 567–578. DOI: 10.1007/s10812-022-01396-4.
  • Eftekhari, A.; Shakerian, M.; Majeed, H. J.; Eftekhari, M.; Rezazadeh, N. Pectic Acid-Graphene Oxide Nanocomposite as an Adsorbent in Vortex-Assisted Dispersive Solid-Phase Extraction for Preconcentration of Copper Ion Followed by Flame Atomic Absorption Spectrometry. Polym. Bull. 2020, 77, 2821–2836. DOI: 10.1007/s00289-019-02884-y.
  • Bendicho, C.; Lavilla, I.; Pena-Pereira, F.; Romero, V. Green Chemistry in Analytical Atomic Spectrometry: A Review. J. Anal. At. Spectrom. 2012, 27, 1831–1857. DOI: 10.1039/c2ja30214d.
  • Santana, A. P. R.; Nascimento, P. d A.; Guimaraes, T. G. S.; Menezes, I. M. N. R.; Andrade, D. F.; Oliveira, A.; Gonzalez, M. H. (Re) Thinking towards a Sustainable Analytical Chemistry: Part I: Inorganic Elemental Sample Treatment, and Part II: Alternative Solvents and Extraction Techniques. Trends Anal. Chem. 2022, 152, 116596. DOI: 10.1016/j.trac.2022.116596.
  • Sajid, M.; Płotka-Wasylka, J. Combined Extraction and Microextraction Techniques: Recent Trends and Future Perspectives. Trends Anal. Chem. 2018, 103, 74–86. DOI: 10.1016/j.trac.2018.03.013.
  • Nascimento, M. S.; Druzian, G. T.; Pereira, L. S. F.; Mesko, M. F.; Picoloto, R. S.; Mello, P. A.; Flores, E. M. M. Microwave-Assisted Extraction for Further Cl, Br, and I Determination in Medicinal Plants by ICP-MS: A Study of Carbon Interferences. J. Anal. At. Spectrom. 2022, 37, 535–543. DOI: 10.1039/d1ja00429h.
  • Saucedo-Velez, A. A.; Hinojosa-Reyes, L.; Villanueva-Rodriguez, M.; Caballero-Quintero, A.; Hernandez-Ramirez, A.; Guzman-Mar, J. L. Speciation Analysis of Organoarsenic Compounds in Livestock Feed by Microwave-Assisted Extraction and High Performance Liquid Chromatography Coupled to Atomic Fluorescence Spectrometry. Food Chem. 2017, 232, 493–500. DOI: 10.1016/j.foodchem.2017.04.012.
  • Yao, C. H.; Jiang, S. J.; Sahayam, A. C.; Huang, Y. L. Speciation of Mercury in Fish Oils Using Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2017, 133, 556–560. DOI: 10.1016/j.microc.2017.04.034.
  • Zhang, W. F.; Hu, Y. A.; Cheng, H. F. Optimization of Microwave-Assisted Extraction for Six Inorganic and Organic Arsenic Species in Chicken Tissues Using Response Surface Methodology. J. Sep. Sci. 2015, 38, 3063–3070. DOI: 10.1002/jssc.201500065.
  • Wu, C. W.; Jiang, S. J.; Sahayam, A. C.; Huang, Y. L. Determination of Cobalt Compounds in Dietary Supplements Using Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta. B. 2019, 154, 70–74. DOI: 10.1016/j.sab.2019.02.010.
  • Machado, I.; Faccio, R.; Pistón, M. Characterization of the Effects Involved in Ultrasound-Assisted Extraction of Trace Elements from Artichoke Leaves and Soybean Seeds. Ultrason. Sonochem. 2019, 59, 104752. DOI: 10.1016/j.ultsonch.2019.104752.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A. S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Tiwari, B. K. Ultrasound: A Clean, Green Extraction Technology. Trends Anal. Chem. 2015, 71, 100–109. DOI: 10.1016/j.trac.2015.04.013.
  • Medeiros, D.; Piechontcoski, F.; Watanabe, E.; Chaves, E. S.; Inglez, S. D. Fast and Effective Simultaneous Determination of Metals in Soil Samples by Ultrasound-Assisted Extraction and Flame Atomic Absorption Spectrometry: Assessment of Trace Elements Contamination in Agricultural and Native Forest Soils from Parana-Brazil. Environ. Monit. Assess. 2020, 192, 111. DOI: 10.1007/s10661-020-8065-0.
  • Suquila, F. A. C.; Scheel, G. L.; de Oliveira, F. M.; Tarley, C. R. T. Assessment of Ultrasound-Assisted Extraction Combined with Supramolecular Solvent-Based Microextraction for Highly Sensitive Cadmium Determination in Medicinal Plant Sample by TS-FF-AAS. Microchem. J. 2019, 145, 1071–1077. DOI: 10.1016/j.microc.2018.12.011.
  • Almeida, J. S.; Santos, G. L.; Brandao, G. C.; Korn, M. G. A.; Teixeira, L. S. G. Multivariate Optimization of Ultrasound-Assisted Extraction Using Doehlert Matrix for Simultaneous Determination of Fe and Ni in Vegetable Oils by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Food Chem. 2019, 273, 130–135. DOI: 10.1016/j.foodchem.2018.01.112.
  • Ebrahimi-Najafabadi, H.; Pasdaran, A.; Bezenjani, R. R.; Bozorgzadeh, E. Determination of Toxic Heavy Metals in Rice Samples Using Ultrasound Assisted Emulsification Microextraction Combined with Inductively Coupled Plasma Optical Emission Spectroscopy. Food Chem. 2019, 289, 26–32. DOI: 10.1016/j.foodchem.2019.03.046.
  • de Gois, J. S.; Lucena, I. O.; Cezario, P. S. O.; da Silva, A. P.; Lima, I. C. A.; Luna, A. S. A High-Throughput Method for Multi-Element Determination in Green Coffee Beans Using Diluted Nitric Acid and Ultrasound Energy. Anal. Methods. 2018, 10, 1656–1661. DOI: 10.1039/C8AY00331A.
  • Paixão, L. B.; Brandão, G. C.; Araujo, R. G. O.; Korn, M. G. A. Assessment of Cadmium and Lead in Commercial Coconut Water and Industrialized Coconut Milk Employing HR-CS GF AAS. Food Chem. 2019, 284, 259–263. DOI: 10.1016/j.foodchem.2018.12.116.
  • Gatiboni, T. L.; Iop, G. D.; Diehl, L. O.; Flores, E. M. M.; Muller, E. I.; Mello, P. A. An Ultrasound-Assisted Sample Preparation Method of Carbonatite Rock for Determination of Rare Earth Elements by Inductively Coupled Plasma Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8732. DOI: 10.1002/rcm.8732.
  • Zuma, M. C.; Nomngongo, P. N.; Mketo, N. Simultaneous Determination of REEs in Coal Samples Using the Combination of Microwave-Assisted Ashing and Ultrasound-Assisted Extraction Methods Followed by ICP-OES Analysis. Minerals. 2021, 11, 1103. DOI: 10.3390/min11101103.
  • Zhang, Y. R.; Na, X.; Shao, Y. B.; Liu, J. X.; Tian, D.; Mao, X. F. Determination of Arsenic in Soil by Ultrasonic Assisted Slurry Sampling Hydride Generation (HG) In-Situ Dielectric Barrier Discharge Trap (DBD)-Optical Emission Spectrometry (OES). Anal. Lett. 2022, 55, 1349–1363. DOI: 10.1080/00032719.2021.2004156.
  • Zhu, Z.; He, D.; Huang, C.; Zheng, H.; Zhang, S.; Hu, S. High-Efficiency Photooxidation Vapor Generation of Osmium for Determination by Inductively Coupled Plasma-Optical Emission Spectrometry. J. Anal. At. Spectrom. 2014, 29, 506–511. DOI: 10.1039/C3JA50323B.
  • Gao, Y.; Li, S. Z.; He, H. Y.; Li, T. L.; Yu, T.; Liu, R.; Ni, S. J.; Shi, Z. M. Sensitive Determination of Osmium in Natural Waters by Inductively Coupled Plasma Mass Spectrometry after Photochemical Vapor Generation. Microchem. J. 2017, 130, 281–286. DOI: 10.1016/j.microc.2016.09.017.
  • Yang, J.; Lin, Y.; He, L.; Su, Y.; Hou, X.; Deng, Y.; Zheng, C. Three-Dimensional Printed Dual-Mode Chemical Vapor Generation Point Discharge Optical Emission Spectrometer for Field Speciation Analyses of Mercury and Inorganic Selenium. Anal. Chem. 2021, 93, 14923–14928. DOI: 10.1021/acs.analchem.1c02023.
  • de Oliveira, R. M.; Borges, D. L. G.; Grinberg, P.; Sturgeon, R. E. High-Efficiency Photoreductive Vapor Generation of Osmium. J. Anal. At. Spectrom. 2021, 36, 2097–2106. DOI: 10.1039/d1ja00192b.
  • Pan, X.; Lin, Y.; Su, Y.; Yang, J.; He, L.; Deng, Y.; Hou, X.; Zheng, C. Methanol-Enhanced Liquid Electrode Discharge Microplasma-Induced Vapor Generation of Hg, Cd, and Zn: The Possible Mechanism and Its Application. Anal. Chem. 2021, 93, 8257–8264. DOI: 10.1021/acs.analchem.1c01091.
  • Xia, S-a.; Leng, A.; Lin, Y.; Wu, L.; Tian, Y.; Hou, X.; Zheng, C. Integration of Flow Injection Capillary Liquid Electrode Discharge Optical Emission Spectrometry and Microplasma-Induced Vapor Generation: A System for Detection of Ultratrace Hg and Cd in a Single Drop of Human Whole Blood. Anal. Chem. 2019, 91, 2701–2709. DOI: 10.1021/acs.analchem.8b04222.
  • Hu, J.; Li, C.; Zhen, Y.; Chen, H.; He, J.; Hou, X. Current Advances of Chemical Vapor Generation in Non-tetrahydroborate Media for Analytical Atomic Spectrometry. Trends Anal. Chem. 2022, 155, 116677. DOI: 10.1016/j.trac.2022.116677.
  • Sturgeon, R. E. Photochemical Vapor Generation: A Radical Approach to Analyte Introduction for Atomic Spectrometry. J. Anal. At. Spectrom. 2017, 32, 2319–2340. DOI: 10.1039/c7ja00285h.
  • Jiang, X. M.; Huang, K.; Deng, D. Y.; Xia, H.; Hou, X. D.; Zheng, C. B. Nanomaterials in Analytical Atomic Spectrometry. Trends Anal. Chem. 2012, 39, 38–59. DOI: 10.1016/j.trac.2012.06.002.
  • Zou, Z.; Hu, J.; Xu, F.; Hou, X.; Jiang, X. Nanomaterials for Photochemical Vapor Generation-Analytical Atomic Spectrometry. Trends Anal. Chem. 2019, 114, 242–250. DOI: 10.1016/j.trac.2019.03.012.
  • Luo, J.; Xu, F.; Hu, J.; Lin, P.; Tu, J.; Wu, X.; Hou, X. Preconcentration on Metal Organic Framework UiO-66 for Slurry Sampling Hydride Generation-Atomic Fluorescence Spectrometric Determination of Ultratrace Arsenic. Microchem. J. 2017, 133, 441–447. DOI: 10.1016/j.microc.2017.03.056.
  • Deng, D.; Zhou, J.; Ai, X.; Yang, L.; Hou, X.; Zheng, C. Ultrasensitive Determination of Selenium by Atomic Fluorescence Spectrometry Using Nano-TiO2 Pre-Concentration and In Situ Hydride Generation. J. Anal. At. Spectrom. 2012, 27, 270–275. DOI: 10.1039/c1ja10244c.
  • Jia, Y.; Mou, Q.; Yu, Y.; Shi, Z.; Huang, Y.; Ni, S.; Wang, R.; Gao, Y. Reduction of Interferences Using Fe-Containing Metal-Organic Frameworks for Matrix Separation and Enhanced Photochemical Vapor Generation of Trace Bismuth. Anal. Chem. 2019, 91, 5217–5224. DOI: 10.1021/acs.analchem.8b05893.
  • Wang, M. L.; He, J.; Luo, J.; Hu, J.; Hou, X. D. Ultrasensitive Determination and Non-Chromatographic Speciation of Inorganic Arsenic in Foods and Water by Photochemical Vapor generation-ICPMS Using CdS/MIL-100(Fe) as Adsorbent and Photocatalyst. Food Chem. 2022, 375, 131841–131848. DOI: 10.1016/j.foodchem.2021.131841.
  • Novák, P.; Dědina, J.; Kratzer, J. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry. Anal. Chem. 2016, 88, 6064–6070. DOI: 10.1021/acs.analchem.6b01365.
  • Zurynková, P.; Dědina, J.; Kratzer, J. Trace Determination of Antimony by Hydride Generation Atomic Absorption Spectrometry with Analyte Preconcentration/Atomization in a Dielectric Barrier Discharge Atomizer. Anal. Chim. Acta. 2018, 1010, 11–19. DOI: 10.1016/j.aca.2018.01.033.
  • Kratzer, J.; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, J. Determination of Bismuth by Dielectric Barrier Discharge Atomic Absorption Spectrometry Coupled with Hydride Generation: Method Optimization and Evaluation of Analytical Performance. Anal. Chem. 2014, 86, 9620–9625. DOI: 10.1021/ac502093y.
  • Kratzer, J.; Musil, S.; Dědina, J. Feasibility of In Situ Trapping of Selenium Hydride in a DBD Atomizer for Ultrasensitive Se Determination by Atomic Absorption Spectrometry Studied with a 75Se Radioactive Indicator. J. Anal. At. Spectrom. 2019, 34, 193–202. DOI: 10.1039/c8ja00312b.
  • Liu, M. T.; Liu, J. X.; Mao, X. F.; Na, X.; Ding, L.; Qian, Y. Z. High Sensitivity Analysis of Selenium by Ultraviolet Vapor Generation Combined with Microplasma Gas Phase Enrichment and the Mechanism Study. Anal. Chem. 2020, 92, 7257–7264. DOI: 10.1021/acs.analchem.0c00878.
  • Liu, M. T.; Ding, L.; Liu, J. X.; Mao, X. F.; Na, X.; Shao, Y. B. Fast and High Sensitive Analysis of Lead in Human Blood by Direct Sampling Hydride Generation Coupled with In Situ Dielectric Barrier Discharge Trap. Anal. Sci. 2021, 37, 321–327. DOI: 10.2116/analsci.20P201.
  • Mao, X.; Qi, Y.; Huang, J.; Liu, J.; Chen, G.; Na, X.; Wang, M.; Qian, Y. Ambient-Temperature Trap/Release of Arsenic by Dielectric Barrier Discharge and Its Application to Ultratrace Arsenic Determination in Surface Water Followed by Atomic Fluorescence Spectrometry. Anal. Chem. 2016, 88, 4147–4152. DOI: 10.1021/acs.analchem.6b00506.
  • Zhang, Y.; Ma, J.; Na, X.; Shao, Y.; Liu, J.; Mao, X.; Chen, G.; Tian, D.; Qian, Y. A Portable and Field Optical Emission Spectrometry Coupled with Microplasma Trap for High Sensitivity Analysis of Arsenic and Antimony Simultaneously. Talanta. 2020, 218, 121161. DOI: 10.1016/j.talanta.2020.121161.
  • Li, M.; Xia, H.; Luo, J.; Yang, X.; Li, H.; Liu, X.; Xu, F. Homogeneous Catalysis for Photochemical Vapor Generation for Speciation of Inorganic Selenium by High Performance Liquid Chromatography-Atomic Fluorescence Spectrometry. J. Anal. At. Spectrom. 2021, 36, 2210–2215. DOI: 10.1039/D1JA00247C.
  • Zhou, D.; Lin, Y.; Long, H.; Xu, Y.; Wang, B.; Xian, L.; Xia, C.; Hou, X.; Zheng, C. Simultaneous Total and Speciation Analysis of Rhenium by Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta. B. 2021, 180, 106211–106218. DOI: 10.1016/j.sab.2021.106211.
  • Yu, H.; Du, H.; Wu, L.; Li, R.; Sun, Q.; Hou, X. Trace Arsenic Speciation Analysis of Bones by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2018, 141, 176–180. DOI: 10.1016/j.microc.2018.05.013.
  • Linhart, O.; Kolorosová-Mrázová, A.; Kratzer, J.; Hraníček, J.; Červený, V. Mercury Speciation in Fish by High-Performance Liquid Chromatography (HPLC) and Post-Column Ultraviolet (UV)-Photochemical Vapor Generation (PVG): Comparison of Conventional Line-Source and High-Resolution Continuum Source (HR-CS) Atomic Absorption Spectrometry (AAS). Anal. Lett. 2019, 52, 613–632. DOI: 10.1080/00032719.2018.1483380.
  • Chen, D. Y.; Lu, L.; Zhang, H.; Lu, B.; Feng, J. L.; Zeng, D. Sensitive Mercury Speciation Analysis in Water by High-Performance Liquid Chromatography-Atomic Fluorescence Spectrometry Coupling with Solid-Phase Extraction. Anal. Sci. 2021, 37, 1235–1240. DOI: 10.2116/analsci.20P398.
  • Miranda-Andrades, J. R.; Khan, S.; Pedrozo-Penafiel, M. J.; Alexandre, K. D. B.; Maciel, R. M.; Escalfoni, R.; Tristao, M. L. B.; Aucelio, R. Q. Combination of Ultrasonic Extraction in a Surfactant-Rich Medium and Distillation for Mercury Speciation in Offshore Petroleum Produced Waters by Gas Chromatography Cold Vapor Atomic Fluorescence Spectrometry. Spectrochim. Acta. B. 2019, 158, 105641. DOI: 10.1016/j.sab.2019.105641.
  • Li, C.; Long, Z.; Jiang, X.; Wu, P.; Hou, X. Atomic Spectrometric Detectors for Gas Chromatography. Trends Anal. Chem. 2016, 77, 139–155. DOI: 10.1016/j.trac.2015.11.012.
  • Sanchez, R.; Chainet, F.; Souchon, V.; Carbonneaux, S.; Lienemann, C. P.; Todol, J. L. Silicon Speciation in Light Petroleum Products Using Gas Chromatography Coupled to ICP-MS/MS. J. Anal. At. Spectrom. 2020, 35, 2387–2394. DOI: 10.1039/d0ja00156b.
  • Jimenez-Moreno, M.; Lominchar, M. A.; Sierra, M. J.; Millan, R.; Martin-Doimeadios, R. C. R. Fast Method for the Simultaneous Determination of Monomethyl Mercury and Inorganic Mercury in Rice and Aquatic Plants. Talanta. 2018, 176, 102–107. DOI: 10.1016/j.talanta.2017.08.015.
  • Suarez-Criado, L.; Queipo-Abad, S.; Rodriguez-Cea, A.; Rodriguez-Gonzalez, P.; Alonso, J. I. G., Comparison of GC-ICP-MS, GC-EI-MS and GC-EI-MS/MS for the Determination of Methylmercury, Ethylmercury and Inorganic Mercury in Biological Samples by Triple Spike Species-Specific Isotope Dilution Mass Spectrometry. J. Anal. At. Spectrom. 2022, 37, 1462–1470. DOI: 10.1039/d2ja00086e.
  • Hu, Z. Y.; Shiokawa, A.; Suzuki, N.; Xiong, H.; Ogra, Y. Evaluation of Chemical Species and Bioaccessibility of Selenium in Dietary Supplements. Eur. Food Res. Technol. 2019, 245, 225–232. DOI: 10.1007/s00217-018-3155-8.
  • Bodur, S.; Oner, M.; Erarpat, S.; Bakirdere, S. Determination of Selenite and Selenomethionine in Kefir Grains by Reversed-Phase High-Performance Liquid Chromatography-Inductively Coupled Plasma-Optical Emission Spectrometry. J. Sep. Sci. 2021, 44, 3031–3040. DOI: 10.1002/jssc.202100359.
  • Shi, J. B.; Jiang, G. B. Application of Gas Chromatography-Atomic Fluorescence Spectrometry Hyphenated System for Speciation of Butyltin Compounds in Water Samples. Spectrosc. Lett. 2011, 44, 393–398. DOI: 10.1080/00387010.2011.559511.
  • Zou, H. M.; Zhou, C.; Li, Y. X.; Yang, X. S.; Wen, J.; Li, C. X.; Song, S. J.; Sun, C. J. Speciation Analysis of Mercury in Wild Edible Mushrooms by High-Performance Liquid Chromatography Hyphenated to Inductively Coupled Plasma Mass Spectrometry. Anal. Bioanal. Chem. 2020, 412, 2829–2840. DOI: 10.1007/s00216-020-02515-w.
  • Campos, R. C.; Goncalves, R. A.; Brandao, G. P.; Azevedo, M. S.; Oliveira, F.; Wasserman, J. Methylmercury Determination Using a Hyphenated High Performance Liquid Chromatography Ultraviolet Cold Vapor Multipath Atomic Absorption Spectrometry System. Spectrochim. Acta. B. 2009, 64, 506–512. DOI: 10.1016/j.sab.2009.05.021.
  • Zhang, X. L.; Ji, D. L.; Zhang, Y.; Lu, Y.; Fu, J. H.; Wang, Z. H. Fe3+-Catalyzed Degradation of Organic Mercury as a Simple Post-Column Interface for the Speciation of Mercury by High-Performance Liquid Chromatography-Catalytic Cold Vapor-Atomic Fluorescence Spectrometry. J. Anal. At. Spectrom. 2020, 35, 693–700. DOI: 10.1039/C9JA00432G.
  • Proch, J.; Niedzielski, P. In-Spray Chamber Hydride Generation by Multi-Mode Sample Introduction System (MSIS) as an Interface in the Hyphenated System of High Performance Liquid Chromatography and Inductivity Coupled Plasma Optical Emission Spectrometry (HPLC/HG-ICP-OES) in Arsenic Species Determination. Talanta. 2020, 208, 120395–120403. DOI: 10.1016/j.talanta.2019.120395.
  • Jia, X.; Gong, D.; Wang, J.; Huang, F.; Duan, T.; Zhang, X. Arsenic Speciation in Environmental Waters by a New Specific Phosphine Modified Polymer Microsphere Preconcentration and HPLC-ICP-MS Determination. Talanta. 2016, 160, 437–443. DOI: 10.1016/j.talanta.2016.07.050.
  • Zhu, M.; Zeng, X.; Jiang, Y.; Fan, X.; Chao, S.; Cao, H.; Zhang, W. Determination of Arsenic Speciation and the Possible Source of Methylated Arsenic in Panax Notoginseng. Chemosphere. 2017, 168, 1677–1683. DOI: 10.1016/j.chemosphere.2016.10.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.