Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 50, 2024 - Issue 1
193
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Use of GEDI Signal and Environmental Parameters to Improve Canopy Height Estimation over Tropical Forest Ecosystems in Mayotte Island

Utilisation du signal GEDI et des paramètres environnementaux pour améliorer l’estimation de la hauteur de la canopée dans les écosystèmes forestiers tropicaux à Mayotte

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2351004 | Received 06 Dec 2023, Accepted 29 Apr 2024, Published online: 14 May 2024

References

  • Adam, M., Urbazaev, M., Dubois, C., and Schmullius, C. 2020. “Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: Influence of environmental and acquisition parameters.” Remote Sensing, Vol. 12(No. 23): p. 1. doi:10.3390/rs12233948.
  • Adrah, E., Wan Mohd Jaafar, W.S., Omar, H., Bajaj, S., Leite, R.V., Mazlan, S.M., Silva, C.A., et al. 2022. “Analyzing canopy height patterns and environmental landscape drivers in tropical forests using NASA’s GEDI spaceborne LiDAR.” Remote Sensing, Vol. 14(No. 13): pp. 3172. doi:10.3390/rs14133172.
  • Asner, G.P., and Mascaro, J. 2014. “Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric.” Remote Sensing of Environment, Vol. 140 pp. 614–22. doi:10.1016/j.rse.2013.09.023.
  • Baghdadi, N.N., El Hajj, M., Bailly, J.-S., and Fabre, F. 2014. “Viability statistics of GLAS/ICESat data acquired over tropical forests.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7(No. 5): pp. 1658–1664. doi:10.1109/JSTARS.2013.2273563.
  • Boyd, D.S., and Danson, F.M. 2005. “Satellite remote sensing of forest resources: Three decades of research development.” Progress in Physical Geography: Earth and Environment, Vol. 29(No. 1): pp. 1–26. doi:10.1191/0309133305pp432ra.
  • Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., et al. 2005. “Tree allometry and improved estimation of carbon stocks and balance in tropical forests.” Oecologia, Vol. 145(No. 1): pp. 87–99. doi:10.1007/s00442-005-0100-x.
  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., et al. 2014. “Improved allometric models to estimate the aboveground biomass of tropical trees.” Global Change Biology, Vol. 20(No. 10): pp. 3177–3190. doi:10.1111/gcb.12629.
  • Chen, Q. 2010. “Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry.” Remote Sensing of Environment, Vol. 114(No. 7): pp. 1610–1627. doi:10.1016/j.rse.2010.02.016.
  • Dhargay, S., Lyell, C.S., Brown, T.P., Inbar, A., Sheridan, G.J., and Lane, P.N.J. 2022. “Performance of GEDI space-borne LiDAR for quantifying structural variation in the temperate forests of south-eastern Australia.” Remote Sensing, Vol. 14(No. 15): p. 3615. doi:10.3390/rs14153615.
  • Dorado-Roda, I., Pascual, A., Godinho, S., Silva, C., Botequim, B., Rodríguez-Gonzálvez, P., González-Ferreiro, E., and Guerra-Hernández, J. 2021. “Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests.” Remote Sensing, Vol. 13(No. 12): p. 2279. doi:10.3390/rs13122279.
  • Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., et al. 2020. “The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography.” Science of Remote Sensing, Vol. 1: p. 100002. doi:10.1016/j.srs.2020.100002.
  • Dubayah, R., Hofton, M., Blair, J., Armston, J., Tang, H., and Luthcke, S. 2021. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002. NASA EOSDIS Land Processes Distributed Active Archive Center. doi:10.5067/GEDI/GEDI02_A.002.
  • Dubayah, R.O., Sheldon, S.L., Clark, D.B., Hofton, M.A., Blair, J.B., Hurtt, G.C., and Chazdon, R.L. 2010. “Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica.” Journal of Geophysical Research: Biogeosciences, Vol. 115(No. G2): p. G00E09. doi:10.1029/2009JG000933.
  • Duncanson, L., Kellner, J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., et al. 2022. “Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission.” Remote Sensing of Environment, Vol. 270: p. 112845. doi:10.1016/j.rse.2021.112845.
  • Dupuy, S., Lainé, G., Tassin, J., and Sarrailh, J.-M. 2013. “Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis.” International Journal of Applied Earth Observation and Geoinformation, Vol. 25: pp. 76–86. doi:10.1016/j.jag.2013.04.001.
  • Fayad, I., Baghdadi, N., Alcarde Alvares, C., Stape, J.L., Bailly, J.S., Scolforo, H.F., Cegatta, I.R., Zribi, M., and Le Maire, G. 2021a. “Terrain slope effect on forest height and wood volume estimation from GEDI data.” Remote Sensing, Vol. 13(No. 11): p. 2136. doi:10.3390/rs13112136.
  • Fayad, I., Baghdadi, N., and Lahssini, K. 2022. “An assessment of the GEDI lasers’ capabilities in detecting canopy tops and their penetration in a densely vegetated, tropical area.” Remote Sensing, Vol. 14(No. 13): p. 2969. doi:10.3390/rs14132969.
  • Fayad, I., Baghdadi, N.N., Alvares, C.A., Stape, J.L., Bailly, J.S., Scolforo, H.F., Zribi, M., and Maire, G.L. 2021b. “Assessment of GEDI’s LiDAR data for the estimation of canopy heights and wood volume of eucalyptus plantations in Brazil.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14: pp. 7095–7110. doi:10.1109/JSTARS.2021.3092836.
  • Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., et al. 2012. “Tree height integrated into pantropical forest biomass estimates.” Biogeosciences, Vol. 9(No. 8): pp. 3381–3403. doi:10.5194/bg-9-3381-2012.
  • Gargominy, O. 2003. Biodiversité et conservation dans les collectivités françaises d’outre-mer. Paris: Comité français pour l’UICN.
  • Gupta, R., and Sharma, L.K. 2022. “Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models.” Remote Sensing Applications: Society and Environment, Vol. 27: p. 100817. doi:10.1016/j.rsase.2022.100817.
  • Hancock, S., Armston, J., Hofton, M., Sun, X., Tang, H., Duncanson, L.I., Kellner, J.R., and Dubayah, R. 2019. “The GEDI simulator: A large-footprint waveform lidar simulator for calibration and validation of spaceborne missions.” Earth and Space Science (Hoboken, N.J.), Vol. 6(No. 2): pp. 294–310. doi:10.1029/2018EA000506.
  • Hilbert, C., and Schmullius, C. 2012. “Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape.” Remote Sensing, Vol. 4(No. 8): pp. 2210–2235. doi:10.3390/rs4082210.
  • Ilangakoon, N.T., Glenn, N.F., Dashti, H., Painter, T.H., Mikesell, T.D., Spaete, L.P., Mitchell, J.J., and Shannon, K. 2018. “Constraining plant functional types in a semi-arid ecosystem with waveform lidar.” Remote Sensing of Environment, Vol. 209: pp. 497–509. doi:10.1016/j.rse.2018.02.070.
  • Kellner, J.R., Clark, D.B., and Hubbell, S.P. 2009. “Pervasive canopy dynamics produce short-term stability in a tropical rain forest landscape.” Ecology Letters, Vol. 12(No. 2): pp. 155–164. doi:10.1111/j.1461-0248.2008.01274.x.
  • Kutchartt, E., Pedron, M., and Pirotti, F. 2022. “Assessment of canopy and ground height accuracy from GEDI LIDAR OVER steep mountain areas.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 3: pp. 431–438. doi:10.5194/isprs-annals-V-3-2022-431-2022.
  • Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M., and Malard, A. 2014. “High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: A Mayotte, Comoros, case study.” Terra Nova, Vol. 26(No. 4): pp. 307–321. doi:10.1111/ter.12102.
  • Lahssini, K., Baghdadi, N., Le Maire, G., and Fayad, I. 2022. “Influence of GEDI acquisition and processing parameters on canopy height estimates over tropical forests.” Remote Sensing, Vol. 14(No. 24): p. 6264. doi:10.3390/rs14246264.
  • Lang, N., Kalischek, N., Armston, J., Schindler, K., Dubayah, R., and Wegner, J.D. 2022. “Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles.” Remote Sensing of Environment, Vol. 268: p. 112760. doi:10.1016/j.rse.2021.112760.
  • Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Del Bom Espirito-Santo, F., Hunter, M.O., and de Oliveira, R. 2005. “Estimates of forest canopy height and aboveground biomass using ICESat.” Geophysical Research Letters, Vol. 32(No. 22): p. L22S02. doi:10.1029/2005GL023971.
  • Li, X., Wessels, K., Armston, J., Hancock, S., Mathieu, R., Main, R., Naidoo, L., Erasmus, B., and Scholes, R. 2023. “First validation of GEDI canopy heights in African savannas.” Remote Sensing of Environment, Vol. 285: p. 113402. doi:10.1016/j.rse.2022.113402.
  • Lima, A.J.N., Suwa, R., de Mello Ribeiro, G.H.P., Kajimoto, T., dos Santos, J., da Silva, R.P., de Souza, C.A.S., et al. 2012. “Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil.” Forest Ecology and Management, Vol. 277: pp. 163–172. doi:10.1016/j.foreco.2012.04.028.
  • Liu, A., Cheng, X., and Chen, Z. 2021. “Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals.” Remote Sensing of Environment, Vol. 264: p. 112571. doi:10.1016/j.rse.2021.112571.
  • Ngo, Y.-N., Ho Tong Minh, D., Baghdadi, N., and Fayad, I. 2023. “Tropical forest top height by GEDI: From sparse coverage to continuous data.” Remote Sensing, Vol. 15(No. 4): pp. 975. doi:10.3390/rs15040975.
  • Ngo, Y.-N., Huang, Y., Minh, D.H.T., Ferro-Famil, L., Fayad, I., and Baghdadi, N. 2022. “Tropical forest vertical structure characterization: From GEDI to P-band SAR tomography.” IEEE Geoscience and Remote Sensing Letters, Vol. 19: pp. 1–5. doi:10.1109/LGRS.2022.3208744.
  • Oliveira, P.V., Zhang, X., Peterson, B., and Ometto, J.P. 2023. “Using simulated GEDI waveforms to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height metrics over the Brazilian Amazon Forest.” Science of Remote Sensing, Vol. 7:p. 100083. doi:10.1016/j.srs.2023.100083.
  • Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., et al. 2011. “A large and persistent carbon sink in the world’s forests.” Science (New York, N.Y.), Vol. 333(No. 6045): pp. 988–993. doi:10.1126/science.1201609.
  • Pascal, O., and Labat, J.-N. 2002. Plantes et forêts de Mayotte. Paris: Muséum national d’histoire naturelle, Institut d’écologie et de gestion de la biodiversité, Service du patrimoine naturel.
  • Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., et al. 2021. “Mapping global forest canopy height through integration of GEDI and Landsat data.” Remote Sensing of Environment, Vol. 253: p. 112165. doi:10.1016/j.rse.2020.112165.
  • Rajab Pourrahmati, M., Baghdadi, N., and Fayad, I. 2023. “Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests.” Remote Sensing, Vol. 15(No. 6): p. 1522. doi:10.3390/rs15061522.
  • Requena Suarez, D., Rozendaal, D.M.A., De Sy, V., Phillips, O.L., Alvarez-Dávila, E., Anderson-Teixeira, K., Araujo-Murakami, A., et al. 2019. “Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data.” Global Change Biology, Vol. 25(No. 11): pp. 3609–3624. doi:10.1111/gcb.14767.
  • Rishmawi, K., Huang, C., and Zhan, X. 2021. “Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data.” Remote Sensing, Vol. 13(No. 3): p. 442. doi:10.3390/rs13030442.
  • Roy, D.P., Kashongwe, H.B., and Armston, J. 2021. “The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring.” Science of Remote Sensing, Vol. 4: p. 100024. doi:10.1016/j.srs.2021.100024.
  • Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D.M.A., Avitabile, V., Araza, A., De Bruin, S., et al. 2021. “The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations.” Earth System Science Data, Vol. 13(No. 8): pp. 3927–3950. doi:10.5194/essd-13-3927-2021.
  • Schleich, A., Durrieu, S., Soma, M., and Vega, C. 2023. “Improving GEDI footprint geolocation using a high-resolution digital elevation model.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 16: pp. 7718–7732. doi:10.1109/JSTARS.2023.3298991.
  • Schlund, M., Wenzel, A., Camarretta, N., Stiegler, C., and Erasmi, S. 2022. “Vegetation canopy height estimation in dynamic tropical landscapes with TanDEM-X supported by GEDI data.” Methods in Ecology and Evolution, Vol. 14 (No. 7): pp. 1639–1656. doi:10.1111/2041-210X.13933.
  • Shannon, E.S., Finley, A.O., Hayes, D.J., Noralez, S.N., Weiskittel, A.R., Cook, B.D., and Babcock, C. 2024. “Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy ALS: A Bayesian model approach.” Environmetrics: p. e2840. https://doi.org/10.1002/env.2840.
  • Shendryk, Y. 2022. “Fusing GEDI with earth observation data for large area aboveground biomass mapping.” International Journal of Applied Earth Observation and Geoinformation, Vol. 115: p. 103108. doi:10.1016/j.jag.2022.103108.
  • Tang, H., Stoker, J., Luthcke, S., Armston, J., Lee, K., Blair, B., and Hofton, M. 2023. “Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI.” Remote Sensing of Environment, Vol. 291: p. 113571. doi:10.1016/j.rse.2023.113571.
  • Urbazaev, M., Hess, L., Sato, L., Ometto, J., Thiel, C., Dubois, C., Adam, M., and Schmullius, C. 2021. “Accuracy assessment of terrain and canopy height estimates from ICESat-2 and GEDI LiDAR missions in temperate and tropical forests: First results.” In Proceedings of the Silvilaser. TU Wien. doi:10.34726/WIM.1984.
  • Vancutsem, C., Achard, F., Pekel, J.-F., Vieilledent, G., Carboni, S., Simonetti, D., Gallego, J., Aragão, L.E.O.C., and Nasi, R. 2021. “Long-term (1990–2019) monitoring of forest cover changes in the humid tropics.” Science Advances, Vol. 7(No. 10): p. eabe1603. doi:10.1126/sciadv.abe1603.
  • Wang, C., Elmore, A.J., Numata, I., Cochrane, M.A., Shaogang, L., Huang, J., Zhao, Y., and Li, Y. 2022. “Factors affecting relative height and ground elevation estimations of GEDI among forest types across the conterminous USA.” GIScience & Remote Sensing, Vol. 59(No. 1): pp. 975–999. doi:10.1080/15481603.2022.2085354.
  • Wang, Y., Ni, W., Sun, G., Chi, H., Zhang, Z., and Guo, Z. 2019. “Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass.” Remote Sensing of Environment, Vol. 224: pp. 386–400. doi:10.1016/j.rse.2019.02.017.
  • Wehr, A., and Lohr, U. 1999. “Airborne laser scanning—An introduction and overview.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54(No. 2–3): pp. 68–82. doi:10.1016/S0924-2716(99)00011-8.
  • Xing, Y., De Gier, A., Zhang, J., and Wang, L. 2010. “An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China.” International Journal of Applied Earth Observation and Geoinformation, Vol. 12(No. 5): pp. 385–392. doi:10.1016/j.jag.2010.04.010.
  • Yang, W., Ni-Meister, W., and Lee, S. 2011. “Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model.” Remote Sensing of Environment, Vol. 115(No. 11): pp. 2810–2822. doi:10.1016/j.rse.2010.02.021.