561
Views
0
CrossRef citations to date
0
Altmetric
Applied Research / Recherche appliquée

Assessing Potential Evapotranspiration Methods in Future Drought Projections across Canada

, , , &
Pages 193-205 | Received 23 Jun 2023, Accepted 10 Nov 2023, Published online: 11 Dec 2023

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Amatya, D. M., Skaggs, R. W., & Gregory, J. D. (1995). Comparison of methods for estimating REF-ET. Journal of Irrigation and Drainage Engineering, 121(6), 427–435. https://doi.org/10.1061/(ASCE)0733-9437(1995)121:6(427)
  • Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., & Rogelj, J. (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change; technical summary.
  • Ault, T. R. (2020). On the essentials of drought in a changing climate. Science, 368(6488), 256–260. https://doi.org/10.1126/science.aaz5492
  • Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/10.1002/joc.3887
  • Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., & Heerdegen, A. (2020). Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. Journal of Southern Hemisphere Earth Systems Science, 70(1), 225–251. https://doi.org/10.1071/ES19040
  • Bonsal, B. R., Aider, R., Gachon, P., & Lapp, S. (2013). An assessment of Canadian prairie drought: Past, present, and future. Climate Dynamics, 41(2), 501–516. https://doi.org/10.1007/s00382-012-1422-0
  • Bonsal, B. R., Cuell, C., Wheaton, E., Sauchyn, D. J., & Barrow, E. (2017). An assessment of historical and projected future hydro-climatic variability and extremes over southern watersheds in the Canadian Prairies. International Journal of Climatology, 37(10), 3934–3948. https://doi.org/10.1002/joc.4967
  • Bonsal, B. R., Liu, Z., Wheaton, E., & Stewart, R. (2020). Historical and projected changes to the stages and other characteristics of severe Canadian Prairie droughts. Water, 12(12), 3370. https://doi.org/10.3390/w12123370
  • Bonsal, B. R., Peters, D. L., Seglenieks, F., Rivera, A., & Berg, A. (2019). Changes in freshwater availability across Canada. Canada’s Changing Climate Report, 261–342.
  • Bonsal, B. R., Wheaton, E. E., Chipanshi, A. C., Lin, C., Sauchyn, D. J., & Wen, L. (2011). Drought research in Canada: A review. Atmosphere-Ocean, 49(4), 303–319. https://doi.org/10.1080/07055900.2011.555103
  • Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., … Vuichard, N. (2020). Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010
  • Bush, E., & Lemmen, D. S. (2019). Canada’s changing climate report. Government of Canada.
  • Cannon, A. J. (2016). Multivariate bias correction of climate model output: Matching marginal distributions and intervariable dependence structure. Journal of Climate, 29(19), 7045–7064. https://doi.org/10.1175/JCLI-D-15-0679.1
  • Cannon, A. J. (2018). Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dynamics, 50(1–2), 31–49. https://doi.org/10.1007/s00382-017-3580-6
  • Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., & Navarra, A. (2019). Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. Journal of Advances in Modeling Earth Systems, 11(1), 185–209. https://doi.org/10.1029/2018MS001369
  • Dibike, Y., Prowse, T., Bonsal, B., & O’Neil, H. (2017). Implications of future climate on water availability in the western Canadian river basins. International Journal of Climatology, 37(7), 3247–3263. https://doi.org/10.1002/joc.4912
  • Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., … Zhang, Q. (2022). The EC-Earth3 earth system model for the coupled model intercomparison project 6. Geoscientific Model Development, 15(7), 2973–3020. https://doi.org/10.5194/gmd-15-2973-2022
  • Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and drainage systems, 16, 33–45. https://doi.org/10.1023/A:1015508322413
  • Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., … Zhao, M. (2020). The gfdl earth system model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12(11), e2019MS002015. https://doi.org/10.1029/2019MS002015
  • Environment and Climate Change Canada. (2023). Canadian climate data and scenarios. https://climate-scenarios.canada.ca
  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  • Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. Journal of Geophysical Research: Atmospheres, 122(4), 2061–2079. https://doi.org/10.1002/2016JD025855
  • Haddeland, I., Heinke, J., Voß, F., Eisner, S., Chen, C., Hagemann, S., & Ludwig, F. (2012). Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrology and Earth System Sciences, 16(2), 305–318. https://doi.org/10.5194/hess-16-305-2012
  • Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., & Kawamiya, M. (2020). Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geoscientific Model Development, 13(5), 2197–2244. https://doi.org/10.5194/gmd-13-2197-2020
  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773
  • Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007). Climatic controls on continental trace fossils. In Trace fossils (pp. 172–195). Elsevier. https://doi.org/10.1016/B978-044452949-7/50137-6.
  • Hogg, E. H., & Hurdle, P. A. (1995). The aspen parkland in western Canada: A dry-climate analogue for the future boreal forest? Water, Air, and Soil Pollution, 82(1-2), 391–400. https://doi.org/10.1007/BF01182849
  • Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements. https://doi.org/10.1061/9780784414057.
  • Katerji, N., & Rana, G. (2011). Crop reference evapotranspiration: A discussion of the concept, analysis of the process and validation. Water Resources Management, 25(6), 1581–1600. https://doi.org/10.1007/s11269-010-9762-1
  • Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., & Arnell, N. W. (2009). Uncertainty in the estimation of potential evapotranspiration under climate change. Geophysical Research Letters, 36(20), https://doi.org/10.1029/2009GL040267
  • Lai, C., Chen, X., Zhong, R., & Wang, Z. (2022). Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change. Agricultural Water Management, 259, 107273. https://doi.org/10.1016/j.agwat.2021.107273
  • Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., & Jones, C. (2021). Future global climate: Scenario-based projections and near-term information. IPCC.
  • Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I.-c., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., & Hsu, H.-H. (2020). Taiwan earth system model version 1: Description and evaluation of mean state. Geoscientific Model Development, 13(9), 3887–3904. https://doi.org/10.5194/gmd-13-3887-2020
  • Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou, T., Liu, L., Wang, L., Pu, Y., Chen, X., Chen, L., Xie, Z., Liu, H., Zhang, L., Huang, X., Feng, T., Zheng, W., … Wei, J. (2020). The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. Journal of Advances in Modeling Earth Systems, 12(9), e2019MS002012. https://doi.org/10.1029/2019MS002012
  • Liljedahl, A. K., Hinzman, L. D., Harazono, Y., Zona, D., Tweedie, C. E., Hollister, R. D., Engstrom, R., & Oechel, W. C. (2011). Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences (online), 8(11), 3375–3389. https://doi.org/10.5194/bg-8-3375-2011
  • Lloyd-Hughes, B. (2014). The impracticality of a universal drought definition. Theoretical and Applied Climatology, 117(3-4), 607–611. https://doi.org/10.1007/s00704-013-1025-7
  • Lofgren, B. M., Hunter, T. S., & Wilbarger, J. (2011). Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. Journal of Great Lakes Research, 37(4), 744–752. https://doi.org/10.1016/j.jglr.2011.09.006
  • Lovato, T., Peano, D., Butenschön, M., Materia, S., Iovino, D., Scoccimarro, E., Fogli, P. G., Cherchi, A., Bellucci, A., Gualdi, S., Masina, S., & Navarra, A. (2022). CMIP6 simulations with the CMCC Earth system model (CMCC-ESM2). Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002814. https://doi.org/10.1029/2021MS002814
  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. I. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2.
  • Masud, M. B., Khaliq, M. N., & Wheater, H. S. (2017). Future changes to drought characteristics over the Canadian Prairie Provinces based on NARCCAP multi-RCM ensemble. Climate Dynamics, 48(7), 2685–2705. https://doi.org/10.1007/s00382-016-3232-2
  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., … Roeckner, E. (2019). Developments in the MPI-M earth system model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4), 998–1038. https://doi.org/10.1029/2018MS001400
  • McAfee, S. A. (2013). Methodological differences in projected potential evapotranspiration. Climatic Change, 120(4), 915–930. https://doi.org/10.1007/s10584-013-0864-7
  • McKenney, D. W., Hutchinson, M. F., Papadopol, P., Lawrence, K., Pedlar, J., Campbell, K., Milewska, E., Hopkinson, R. F., Price, D., & Owen, T. (2011). Customized spatial climate models for North America. Bulletin of the American Meteorological Society, 92(12), 1611–1622. https://doi.org/10.1175/2011BAMS3132.1
  • McKenney, M. S., & Rosenberg, N. J. (1993). Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology, 64(1–2), 81–110. https://doi.org/10.1016/0168-1923(93)90095-Y
  • McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., & McVicar, T. R. (2013). Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrology and Earth System Sciences, 17(4), 1331–1363. https://doi.org/10.5194/hess-17-1331-2013
  • Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., … Wang, R. H. J. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
  • Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, K., Hosaka, M., Sugi, M., & Yukimoto, S. (2012). Climate simulations using MRI-AGCM3. 2 with 20-km grid. 気象集誌. 第 2 輯, 90, 233–258. https://doi.org/10.2151/jmsj.2012-A12
  • Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., … Marotzke, J. (2018). A higher-resolution version of the max planck institute earth system model (MPI-ESM1. 2-HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383–1413. https://doi.org/10.1029/2017MS001217
  • PaiMazumder, D., Sushama, L., Laprise, R., Khaliq, M. N., & Sauchyn, D. (2013). Canadian RCM projected changes to short-and long-term drought characteristics over the Canadian Prairies. International Journal of Climatology, 33(6), 1409–1423. https://doi.org/10.1002/joc.3521
  • Pak, G., Noh, Y., Lee, M.-I., Yeh, S.-W., Kim, D., Kim, S.-Y., Lee, J.-L., Lee, H. J., Hyun, S.-H., Lee, K.-Y., Lee, J.-H., Park, Y.-G., Jin, H., Park, H., & Kim, Y. H. (2021). Korea institute of ocean science and technology earth system model and its simulation characteristics. Ocean Science Journal, 56(1), 18–45. https://doi.org/10.1007/s12601-021-00001-7
  • Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce.
  • Paredes, P., & Pereira, L. S. (2019). Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation. Agricultural Water Management, 215, 86–102. https://doi.org/10.1016/j.agwat.2018.12.014
  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031
  • Pimentel, R., Arheimer, B., Crochemore, L., Andersson, J. C. M., Pechlivanidis, I. G., & Gustafsson, D. (2023). Which potential evapotranspiration formula to use in hydrological modelling world-wide? Water Resources Research, e2022WR033447. https://doi.org/10.1029/2022WR033447
  • Reid, K. A., Reid, D. G., & Brown, C. D. (2022). Patterns of vegetation change in Yukon: Recent findings and future research in dynamic subarctic ecosystems. Environmental Reviews, 30(3), 380–401. https://doi.org/10.1139/er-2021-0110
  • Saenz, G. A., & Huang, H.-P. (2015). Trends in downward solar radiation at the surface over North America from climate model projections and implications for solar energy. Advances in Meteorology, 2015, 1–7. https://doi.org/10.1155/2015/483679
  • Saint-Martin, D., Geoffroy, O., Voldoire, A., Cattiaux, J., Brient, F., Chauvin, F., Chevallier, M., Colin, J., Decharme, B., Delire, C., Douville, H., Guérémy, J-F, Joetzjer, E., Ribes, A., Roehrig, R., Terray, L., & Valcke, S. (2021). Tracking changes in climate sensitivity in CNRM climate models. Journal of Advances in Modeling Earth Systems, 13(6), e2020MS002190. https://doi.org/10.1029/2020MS002190
  • Santiago, B., & Vicente-Serrano, S. (2023). R package: Calculation of the standardized precipitation-evapotranspiration index. https://spei.csic.es
  • Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., Guérémy, J., Moine, M., Msadek, R., … Madec, G. (2019). Evaluation of CNRM earth system model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11(12), 4182–4227. https://doi.org/10.1029/2019MS001791
  • Seland, Ø, Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., … Schulz, M. (2020). Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development, 13(12), 6165–6200. https://doi.org/10.5194/gmd-13-6165-2020
  • Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Vicente-Serrano, S. M., Wehner, M., & Zhou, B. (2021). 11 Chapter 11: weather and climate extreme events in a changing climate.
  • Sentelhas, P. C., Gillespie, T. J., & Santos, E. A. (2010). Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97(5), 635–644. https://doi.org/10.1016/j.agwat.2009.12.001
  • Shaw, S. B., & Riha, S. J. (2011). Assessing temperature-based PET equations under a changing climate in temperate, deciduous forests. Hydrological Processes, 25(9), 1466–1478. https://doi.org/10.1002/hyp.7913
  • Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature, 491(7424), 435–438. https://doi.org/10.1038/nature11575
  • Sobie, S. R., Ouali, D., Curry, C. L., & Zwiers, F. W. (2023). Multivariate canadian downscaled climate scenarios for CMIP6 (CanDCS-M6). Manuscript Submitted.
  • Stagge, J. H., Tallaksen, L. M., Xu, C. Y., & Van Lanen, H. A. (2014). Standardized precipitation-evapotranspiration index (SPEI): Sensitivity to potential evapotranspiration model and parameters. Hydrology in a Changing World, 363, 367–373. https://doi.org/10.1002/joc.3887
  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change, 5, 1–1552.
  • Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., … Winter, B. (2019). The Canadian earth system model version 5 (CanESM5. 0.3). Geoscientific Model Development, 12(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019
  • Tam, B. Y., Cannon, A. J., & Bonsal, B. R. (2023). Standardized precipitation evapotranspiration index (SPEI) for Canada: Assessment of probability distributions. https://doi.org/10.1080/07011784.2023.2183143.
  • Tam, B. Y., Szeto, K., Bonsal, B., Flato, G., Cannon, A. J., & Rong, R. (2019). CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Canadian Water Resources Journal/Revue Canadienne Des Ressources Hydriques, 44(1), 90–107. https://doi.org/10.1080/07011784.2018.1537812
  • Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., … Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12(7), 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019
  • Tian-Jun, Z., & Tao, H. (2013). Projected changes of palmer drought severity index under an RCP8. 5 scenario. Atmospheric and Oceanic Science Letters, 6(5), 273–278. https://doi.org/10.3878/j.issn.1674-2834.13.0032
  • Tomas-Burguera, M., Vicente-Serrano, S. M., Beguería, S., Reig, F., & Latorre, B. (2019). Reference crop evapotranspiration database in Spain (1961–2014). Earth System Science Data, 11(4), 1917–1930. https://doi.org/10.5194/essd-11-1917-2019
  • Van der Schrier, G., Jones, P. D., & Briffa, K. R. (2011). The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. Journal of Geophysical Research: Atmospheres, 116(D3). https://doi.org/10.1029/2010JD015001
  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
  • Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., … Waldman, R. (2019). Evaluation of CMIP6 deck experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11(7), 2177–2213. https://doi.org/10.1029/2019MS001683
  • Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov, V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., & Iakovlev, N. G. (2017). Simulation of the present-day climate with the climate model INMCM5. Climate Dynamics, 49(11–12), 3715–3734. https://doi.org/10.1007/s00382-017-3539-7
  • Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov, V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., Iakovlev, N. G., Shestakova, A. A., & Emelina, S. V. (2018). Simulation of the modern climate using the INM-CM48 climate model. Russian Journal of Numerical Analysis and Mathematical Modelling, 33(6), 367–374. https://doi.org/10.1515/rnam-2018-0032
  • Wang, Y., Hogg, E. H., Price, D. T., Edwards, J., & Williamson, T. (2014). Past and projected future changes in moisture conditions in the Canadian boreal forest. The Forestry Chronicle, 90(5), 678–691. https://doi.org/10.5558/tfc2014-134
  • Werner, A. T., Schnorbus, M. A., Shrestha, R. R., Cannon, A. J., Zwiers, F. W., Dayon, G., & Anslow, F. (2019). A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Scientific Data, 6(1), 1–16. https://doi.org/10.1038/sdata.2018.299
  • Wheaton, E., Kulshreshtha, S., Wittrock, V., Bonsal, B. R., Chipanshi, A., Grant, C., & Koshida, G. (2005). Canadian droughts of 2001 and 2002: Climatology, impacts, and adaptations. Volumes I and II, Prepared for Agriculture and Agri-Food Canada, Saskatchewan Research Council, Saskatoon, SK.
  • Wheaton, E., Kulshreshtha, S., Wittrock, V., & Koshida, G. (2008). Dry times: Hard lessons from the Canadian drought of 2001 and 2002. The Canadian Geographer/Le Géographe Canadien, 52(2), 241–262. https://doi.org/10.1111/j.1541-0064.2008.00211.x
  • Wild, M., Folini, D., Henschel, F., Fischer, N., & Müller, B. (2015). Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12–24. https://doi.org/10.1016/j.solener.2015.03.039
  • Wilhite, D., & Pulwarty, R. S. (2017). Drought and water crises: Integrating science, management, and policy. CRC Press.
  • Xiao, J., & Zhuang, Q. (2007). Drought effects on large fire activity in Canadian and Alaskan forests. Environmental Research Letters, 2(4), 044003. https://doi.org/10.1088/1748-9326/2/4/044003
  • Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., & Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Ser. II, 97(5), 931–965. https://doi.org/10.2151/jmsj.2019-051
  • Zhang, X., Vincent, L. A., Hogg, W. D., & Niitsoo, A. (2000). Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean, 38(3), 395–429. https://doi.org/10.1080/07055900.2000.9649654
  • Zhou, Z., Zhang, L., Chen, J., She, D., Wang, G., Zhang, Q., Xia, J., & Zhang, Y. (2023). Projecting global drought risk under various SSP-RCP scenarios. Earth’s Future, 11(5), e2022EF003420. https://doi.org/10.1029/2022EF003420
  • Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., Wang, Y.-P., & Srbinovsky, J. (2020). The Australian earth system model: ACCESS-ESM1. 5. Journal of Southern Hemisphere Earth Systems Science, 70(1), 193–214. https://doi.org/10.1071/ES19035